2019届江西省南昌市中考数学二模试卷含详细解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年江西省南昌市中考数学二模试卷一、选择题(共18.0分)1.|-2019|等于()A.2019B.−2019C.12019D.−120192.计算(-2b)3的结果是()A.−8𝑏3B.8𝑏3C.−6𝑏3D.6𝑏33.李克强总理在2019年的政府工作报告中指出:三大攻坚战开局良好.其中精准脱贫有力推进,农村贫困人口减少1386万,易地扶贫搬迁280万人,数据1386万用科学记数法可表示为()A.1386×104B.1.386×106C.1.386×107D.0.1386×1084.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的茶杯(茶口的直径与托盘的直径相同),则这只茶杯的俯视图大致是()A.B.C.D.5.如图,在Rt△ABC中,∠ACB=90°,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论错误的是()A.𝐴𝐷=𝐵𝐷B.𝐹𝐶=𝐷𝐹C.∠𝐴𝐶𝐷=∠𝐵𝐶𝐷D.四边形DECF是正方形6.如图,P是抛物线y=x2-x-4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A.10B.8C.7.5D.5√3二、填空题(共18.0分)7.分解因式:4x2-1=______.8.已知关于x的一元二次方程x2+ax+b=0的两根分别为-1和2,则𝑏2=______.9.如图,在Rt△ABC中,∠ACB=90°,AC=BC,以AB为直径作⊙O,在𝐴𝐵𝐶⏜上取一点D,使𝐵𝐷⏜=2𝐴𝐷⏜,则∠CBD=______.10.已知a,b,c三个数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为______.11.《孙子算经》有这样一道题:今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?大意是:用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条长度多一尺,则木条长______尺.12.如图,反比例函数y=𝑘𝑥(x>0)的图象与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是______.三、解答题(共84.0分)13.(1)解不等式:1-𝑥+52<-1-x(2)解方程组:14.如图,在▱ABCD中,E是BC延长线上的一点,AE与CD交于点F.求证:△ADF∽△EBA.15.甲、乙两个工程队需完成A、B两个工地的工程.若甲、乙两个工程队分别可提供40个和50个标准工作量,完成A、B两个工地的工程分别需要70个和20个标准工作量,且两个工程队在A、B两个工地的1个标准工作量的成本如下表所示:A工地B工地甲工程队800元750元乙工程队600元570元设甲工程队在A工地投入x(20≤x≤40)个标准工作量,完成这两个工程共需成本y元.(1)求y与x之间的函数关系式;(2)请判断y是否能等于62000,并说明理由.16.如图,四边形ABCD为菱形,且∠BAD=120°,以AD为直径作⊙O,与CD交于点P.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点C作AB边上的高CE;(2)在图2中,过点P作⊙O的切线PQ,与BC交于点Q.17.举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹之一”当车辆经过这座大桥的收费站时,需从已开放的4个收费通道A、B、C、D中随机选择一个通过晶晶和贝贝两位同学的爸爸相约分别驾车经港珠澳大桥到香港旅行.(1)晶晶的爸爸驾车通过收费站时,选择A通道通过的概率是多少?(2)用画树状图或列表法求这两辆车经过此收费站时,选择不同通道通过的概率.18.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC的面积(π取3.14,结果精确到1cm)19.某居委会为了了解本辖区内家庭月平均用水情况,随机调查了该辖区内的部分家庭,调查数据统计结果如下:月平均用水量x(吨)频数频率0<x≤560.125<x≤10a0.2410<x≤15160.3215<x≤20100.2020<x≤2540.0825<x≤3020.04请解答以下问题:(1)频数分布表中a=______,并把频数分布直方图补充完整;(2)求被调查的用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该辖区内有1000户家庭,根据调查数据估计,该辖区月平均用水量超过20吨的家庭有多少户?20.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF=√10,求OA的长.21.如图,在平面直角坐标系中,次函数y=ax+b(a≠0)的图象与反比例函数y=𝑘𝑥(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于C点,过点A作AM⊥x轴于点M,作AN⊥y轴于点N,OM=2,tan∠AOM=32,点B的坐标为(m,-2).(1)求四边形AMON的周长和面积;(2)求该反比例函数和一次函数的解析式.22.【操作发现】(1)如图1,将△ABC绕点A逆时针旋转90°得到△ADE,连接BD,则∠ABD的度数是______.【类比探究】(2)如图2,在等腰直角三角形ABC内取一点P,使∠APB=135°,将△ABP绕顶点A逆时针旋转90°得到△ACP',连接PP'.请猜想BP与CP'有怎样的位置关系,并说明理由.【解决问题】(3)如图3,在等腰直角三角形ABC内任取一点P,连接PA、PB、PC.求证:PC+√2PA>PB.23.我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y=2ax+b的“母函数”.(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标.(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式.(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D两点,动点P为二次函数y=-x2-4x+8对称轴右侧上的动点,求△PCD的面积的最大值.答案和解析1.【答案】A【解析】解:|-2019|=2019.故选:A.利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】A【解析】解:(-2b)3=-8b3.故选:A.直接利用积的乘方运算法则计算得出答案.此题主要考查了积的乘方运算,正确将原式变形是解题关键.3.【答案】C【解析】解:1386万=1.386×107.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.4.【答案】B【解析】解:俯视图如选项B所示,故选:B.根据从上面看得到的图象是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.5.【答案】A【解析】解:∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∵∠ACB=90°,∴四边形DECF是矩形,∵CD是∠ACB的平分线,∴∠FCD=∠ECD,故C正确;∵∠FCD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,∴四边形DECF是正方形,故D正确;∴CF=DF,故B正确,故选:A.根据已知条件推出四边形DECF是平行四边形,求得四边形DECF是矩形,根据角平分线的定义得到∠FCD=∠ECD,故C正确;推出四边形DECF是正方形,故D正确;根据正方形的性质得到CF=DF,故B正确.本题考查了正方形的判定,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.6.【答案】A【解析】解:设P(x,x2-x-4),四边形OAPB周长=2PA+2OA=-2(x2-x-4)+2x=-2x2+4x+8=-2(x-1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故选:A.设P(x,x2-x-4)根据矩形的周长公式得到C=-2(x-1)2+10.根据二次函数的性质来求最值即可.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.【答案】(2x+1)(2x-1)【解析】解:4x2-1=(2x+1)(2x-1).故答案为:(2x+1)(2x-1).直接利用平方差公式分解因式即可.平方差公式:a2-b2=(a+b)(a-b).本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.8.【答案】-1【解析】解:∵关于x的一元二次方程x2+ax+b=0的两根分别为-1和2,∴b=-1×2=-2,∴=-1.故答案为:-1.由方程的两根结合根与系数的关系可求出b=-2,进而可求出的值,此题得解.本题考查了根与系数的关系,牢记“两根之积等于”是解题的关键.9.【答案】75°【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=BC,∴∠CBA=45°,∵在Rt△ABC中,∠ACB=90°,=2,∴∠ABD=30°,∴∠CBD=75°,故答案为:75°根据直径所对的圆周角是90°,再根据圆周角定理解答即可.此题考查圆周角定理,关键是根据根据直径所对的圆周角是90°解答.10.【答案】8【解析】解:d=5×4-4×3=20-12=8.答:d的值为8.故答案为:8.根据总数=平均数×数据总和,分别求出a,b,c,d四个数的总数,a,b,c三个数的总数,再相减即可求解.本题考查了平均数的概念.平均数等于所有数据的和除以数据的个数.11.【答案】6.5【解析】解:设绳子长x尺,木条长y尺,依题意,得:,解得:.故答案为:6.5.设绳子长x尺,木条长y尺,根据“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条长度多一尺”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.【答案】(2,32)或(2,92)或(6,-32)【解析】解:把点A(2,3)代入y=(x>0)得:k=xy=6,故该反比例函数解析式为:y=.∵点B(4,0),BC⊥x轴,∴把x=4代入反比例函数y=,得y=.则C(4,).①如图,当四边形ACBD为平行四边形时,AD∥BC且AD=BC.∵A(2,3)、B(4,0)、C(4,),∴点D的横坐标为2,yA-yD=yC-yB,故yD=.所以D(2,).②如图,当四边形ABCD′为平行四边形时,AD′∥CB且AD′=CB.∵A(2,3)、B(4,0)、C(4,),∴点D的横坐标为2,yD′-yA=yC-yB,故yD′=.所以D′(2,).③如图,当四边形ABD″C为平行四边形时,AC=BD″且AC∥BD″.∵A(2,3)、B(4,0)、C(4,),∴xD″-xB=xC-xA即xD″-4=4-2,故xD″=6.yD″-yB=yC-yA即yD″-0=-3,故yD″=-.所以D″(

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功