2019年四川省成都市邛崃市中考数学二诊试卷解析版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年四川省成都市邛崃市中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数7的相反数是()A.B.﹣C.﹣7D.72.二次根式中x的取值范围是()A.x≥0B.3C.x≥3D.x≤﹣33.计算3ab2﹣4ab2的结果是()A.﹣ab2B.ab2C.7ab2D.﹣14.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为()A.1269×108B.1.269×108C.1.269×1010D.1.269×10115.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.6.在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)7.图中三视图对应的正三棱柱是()A.B.C.D.8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)510152025人数258x6则这30名同学每天使用的零花钱的众数和中位数分别是()A.15、15B.20、17.5C.20、20D.20、159.在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AB∥DCB.OC=OBC.AC⊥BDD.OA=OC10.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC交于点P,OP=4,则⊙O的半径为()A.8B.12C.8D.12二、填空题(本大题共4个小题,每小题4分,共16分,把答案填写在答题卡上)11.(4分)分解因式:3a2+a=.12.(4分)二次函数y=2x2﹣12x+13的最小值是.13.(4分)如图,将矩形ABCD沿BD翻折,点C落在P点处,连结AP.若∠ABP=26°,那么∠APB=.14.(4分)已知点A为双曲线y=图象上的点,点O为坐标原点,过A作AB⊥x轴于点B,连接OA,若△AOB的面积为6,则k=.三、解答题(本大题6小题,共54分)15.(12分)(1)计算:(﹣2)﹣2﹣sin45°.(2)解方程组:.16.(6分)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=16,BD=12,求菱形ABCD的高DH.17.(8分)某市开展一项全民健身跑步运动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向上,C地在A地北偏东75°方向上,且BC=CD=10km,问:沿上述线路从A地到D地的路程大约是多少?(结果保留1位小数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,,)18.(8分)现如今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我是50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整);步数频数频率0≤x<4000a0.164000≤x<8000150.38000≤x<12000B0.2412000≤x<1600010c16000≤x<2000030.0620000≤x<250002d请根据以上信息,解答下列问题:(1)写出a、b、c、d的值并补全频数分布直方图;(2)本市约有58000名教师,用调查的样本数据估计日行步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师的日行走步数恰好都在20000步(包含20000步)以上的频率.19.(10分)如图,在平面直角坐标系中,点O为坐标原点,长方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,3),双曲线y=(x>0)的图象经过线段BC的中点D.(1)求双曲线的解析式;(2)若点P(x,y)在分比例函数的图象上运动(不与点D重合),过P作PQ⊥y轴于点Q,记△CPQ的面积为S,求S关于x的解析式,并写出x的取值范围.20.(10分)如图,CD是⊙O的直径,弦AB⊥CD,垂足为H,连接BC,过上一点E作EF∥BC交BA的延长线于点F,CE交AB于点G,∠FEG=∠FGE,CD延长线交EF于点K.(1)求证:EK是⊙O的切线;(2)求证:;(3)若,,求DK的值.四、填空(本大题5个小题,每小题4分,共20分.)21.(4分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.22.(4分)2019年2月上旬某市空气质量指数(AQI)(单位:μg/m3)如下表所示,空气质量指数不大于100表示空气质量优良日期12345678910AQI(μg/m3)283645433650801176147如图小王2月上旬到该市度假一次,那么他在该市度假3天空气质量都是优良的概率是.23.(4分)如图,矩形ABCD中,AB=8,BC=4,以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为.(结果保留π)24.(4分)如图,在△ABC中,已知AB=AC=4,BC=6,P是BC边上的一动点(P不与点B、C重合),连接AP,∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB之长为.25.(4分)如图,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示,给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=24cm2;③当14<t<22时,y=100﹣6t;④在运动过程中,使得△ABP是等腰三角形的P点一共3个;⑤当△BPQ与△BEA相似时,t=14.5,其中正确结论的序号是.五、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.(8分)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.27.(10分)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P(1)如图1,若四边形ABCD是正方形,求证:∠AC1O=∠BD1O(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1.求AC+(kDD1)2的值.28.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣7,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D,顶点坐标为M.(1)求抛物线的表达式和顶点M的坐标;(2)如图1,点E(x,y)为抛物线上一点,点E不与点M重合,当﹣7<x<﹣2时,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴与点H,得到矩形EHDF,求矩形EHDF的周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P、A、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.2019年四川省成都市邛崃市中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:7的相反数是﹣7,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:由题意知x﹣3≥0,解得:x≥3,故选:C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.3.【分析】利用合并同类项的法则解答.【解答】解:原式=(3﹣4)ab2=﹣ab2故选:A.【点评】考查了合并同类项,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1269亿=126900000000=1.269×1011,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】根据勾股定理,可得AB的长,根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:在Rt△ABC中,由勾股定理,得AB==5.sinB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点P(1,﹣2)关于x轴的对称点的坐标是(1,2),故选:A.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.7.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.8.【分析】利用众数的定义可以确定众数在第三组,由于随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.【解答】解:∵童老师随机调查了30名同学,∴x=30﹣2﹣5﹣8﹣6=9,∵20出现了9次,它的次数最多,∴众数为20.∵随机调查了30名同学,∴根据表格数据可以知道中位数=(15+20)÷2=17.5,即中位数为17.5.故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9.【分析】根据菱形的性质即可判断.【解答】解:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC,故A,C,D正确,故选:B.【点评】本题考查菱形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.10.【分析】连接OA,OC,由同弧所对的圆心角是圆周角的2倍可得∠AOC=120°,由等腰三角形的性质可得∠OAC=∠OCA=30°,由直角三角形的性质可求AO的长.【

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功