2019年山东省聊城市东阿县中考数学一模试卷一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a32.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.0.11×108B.1.1×109C.1.1×1010D.11×1083.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A.B.C.D.4.不等式组的解集在数轴上正确表示的是()A.B.C.D.5.如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数是()A.30°B.40°C.50°D.60°6.高速路上因赶时间超速而频频发生交通事故,这样给自己和他人的生命安全带来直接影响,为了解车速情况,一名执法交警在高速路上随机测试了6个小轿车的车速情况记录如下:车序号123456车速(千米/时)10095106100120100则这6辆车车速的众数和中位数(单位:千米/时)分别是()A.100,95B.100,100C.102,100D.100,1037.若函数y=的图象在每一个象限内y的值随x值的增大而增大,则函数y=(1+m)x+m2+3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.下列命题中,是真命题的是()A.一元二次方程的一般形式是ax2+bx+c=0B.一元二次方程ax2+bx+c=0的根是x=C.方程x2=x的解是x=1D.方程x(x﹣5)(x+7)=0的根有三个9.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤10.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cmB.cmC.cmD.4cm二、填空题(每小题3分,共24分)11.若分式的值为0,则x的值为.12.分解因式(x﹣1)(x﹣3)+1=.13.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是.14.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.15.对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=.16.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.17.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.18.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除,余数为1时,则向右走1个单位长度;当n被3除,余数为2时,则向右走2个单位长度,当走完第8步时,棋子所处位置的坐标是;当走完第2018步时,棋子所处位置的坐标是.三、解答题(共66分)19.(6分)计算:()﹣1﹣2cos30°++(2﹣π)020.(6分)如图,已知∠ABC=90°,分别以AB和BC为边向外作等边△ABD和等边△BCE,连接AE,CD.求证:AE=CD.21.(8分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为度;(2)图2、3中的a=,b=;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?22.(10分)某校的教室A位于工地O的正西方向,且OA=200m,一台拖拉机从O点出发,以每秒5m的速度沿北偏西53°的方向行驶,设拖拉机的噪声污染半径为130m,则教室A是否在拖拉机的噪声污染范围内?若不在,请说明理由;若在,求出教室A受噪声污染的时间有几秒.(参考数据:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)23.(10分)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,sin∠CAF=,求BE的长.24.(12分)某网站店主购进A、B两种型号的装饰链,其中A型装饰链的进货单价比B型装饰链的进货单价多20元,花500元购进A型装饰链的数量比花400元购进B型装饰链的数量相等.销售中发现A型装饰链的每月销售量y1(个)与销售单价x(元)之间满足的函数关系式为y1=﹣x+200;B型装饰链的每月销售量y2(个)与销售单价x(元)满足的关系式为y2=﹣x+140(1)求A、B两种型号装饰链的进货单价.(2)已知每个A型装饰链的销售单价比B型装饰链的销售单价高20元.求A、B两种型号装饰链的销售单价各为多少元时,每月销售这两种装饰链的总利润最大,最大总利润是多少?25.(14分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).2019年山东省聊城市东阿县中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选:B.【点评】本题主要考查了同底数幂的除法,积的乘方,合并同类项,以及完全平方公式,是中学阶段的基础题目.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100000000用科学记数法表示应为1.1×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用对称性与排除法求解.【解答】解:∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选:D.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.4.【分析】分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来,找出符合条件的选项即可.【解答】解:,由①得,x<2,由②得,x≥﹣3,在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5.【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【解答】解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选:B.【点评】此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.6.【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:95,100,100,100,106,120,则众数为:100,中位数为:100.故选:B.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】先根据反比例函y=的图象在每一个象限内,y随x的增大而增大得出关于m的不等式,求出m的取值范围.然后推知函数y=(1+m)x+m2+3的图象所经过的象限.【解答】解:∵反比例函数y=的图象在每一个象限内y的值随x值的增大而增大,∴m+2<0,∴m<﹣2.∴1+m<0,m2+3>7,∴函数y=(1+m)x+m2+3的图象经过第一、二、四象限,即不经过第三象限.故选:C.【点评】考查了反比例函数的性质,一次函数的性质,反比例函数的图象,难度不大,熟悉函数图象与系数的关系即可解题.8.【分析】根据一元二次方程的解的定义、一般形式等知识分别判断后即可确定正确的选项.【解答】解:A、一元二次方程的一般形式为ax2+bx+c=0(a≠0),故错误;B、一元二次方程ax2+bx+c=0(a≠0)的根是x=,故错误;C、方程x2=x的解是x=1或x=0,故错误;D、方程x(x﹣5)(x+7)=0的根有三个,正确;故选:D.【点评】本题考查了一元二次方程的解的定义、一元二次方程的一般形式等知识,属于一元二次方程的基础知识,难度较小.9.【分析】根据抛物线与x轴的交点情况,抛物线的开口方向,对称轴及与y轴的交点,当x=±1时的函数值,逐一判断.【解答】解:∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,即b2>4ac,故①正确;∵抛物线对称轴为x=﹣<0,与y轴交于负半轴,∴ab>0,c<0,abc<0,故②错误;∵抛物线对称轴为x=﹣=﹣1,∴2a﹣b=0,故③错误;∵当x=1时,y>0,即a+b+c>0,故④正确;∵当x=﹣1时,y<0,即a﹣b+c<0,故⑤正确;正确的是①④⑤.故选:D.【点评】本题考查了抛物线与二次函数系数之间的关系.关键是会利用对称轴的值求2a与b的关系,对称轴与开口方向确定增减性,以及二次函数与方程之间的转换.10.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.二、填空题(每小题3分,共24分)11.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x2﹣4=0且x﹣2≠0,解得x=