2019年广东省汕头市潮南区仙港初级中学中考数学模拟试卷(4月份)一、选择题(每小题3分,共30分)1.下列各数中,其相反数等于本身的是()A.﹣1B.0C.1D.20182.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.3.函数y=中自变量x的取值范围是()A.x≠﹣4B.x≠4C.x≤﹣4D.x≤44.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.5.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°6.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4B.8C.2D.47.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定8.已知直线y=ax+b(a≠0)经过第一,二,四象限那么,直线y=bx﹣a一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.如图所示,线段AB切⊙O于点A,连接OA,OB,OB与⊙O交于点C.若OC=BC=2,则图中阴影部分的面积为()A.2﹣B.4﹣C.2﹣D.4﹣10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC边上(不与点C重合),以AC为对角线作平行四边形ADCE,连接DE交AC于点O.设BD=x,OD2=y,则y与x之间的函数关系图象大致为()A.B.C.D.二、填空题(每小题4分,共24分)11.若=2.938,=6.329,则=.12.若﹣xm+2y6与2xy2n是同类项,则|m﹣n|等于.13.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=14.已知方程组的解满足x﹣y=2,则k的值是.15.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为.16.将正整数按如下方式进行有规律的排列,第2行最后一个数是4,第3行最后一个数是7,第4行最后一个数是10…,依此类推,第行最后一个数是2017.123434567456789105678910111213…三、解答题(一)(每小题6分,共18分)17.计算:|﹣1|﹣2sin45°+﹣2018018.若x2﹣2x﹣1=0,先化简,后求出(x﹣1)2+x(x﹣2)的值.19.如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.四、解答题(二)(每小题7分,共21分)20.近年来,吴兴区坚定不移地践行“绿水青山就是金山银山”发展理念,跑出了乡村旅游发展的“吴兴速度”.已成功打造了汇聚文化体验、乡村休闲、养生养老等多元业态的西塞山省级旅游度假区,拥有A﹣菰城景区;B﹣原乡小镇;C﹣丝绸小镇•西山漾;D﹣台湾风情小镇;E﹣古梅花观等高品质景区.吴兴区某中学九年级开展了“我最喜爱的旅游景区”的抽样调查(每人只能选一项).根据收集的数据绘制了两幅不完整的统计图,其中B对应的圆心角为900.请根据图中信息解答下列问题:(1)此次抽取的九年级学生共人,m=,并补全条形统计图;(2)九年级准备在最喜爱原乡小镇的4名优秀学生中任意选择两人去实地考察,这4名学生中有2名男生和2名女生,用树状图或列表法求选出的两名学生都是男生的概率.21.如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.22.如图,直线y=﹣x+m与x轴,y轴分别交于点B,A两点,与双曲线y=(k≠0)相交于C,D两点,过C作CE⊥x轴于点E,已知OB=4,OE=2.(1)求直线和双曲线的表达式;(2)设点F是x轴上一点,使得S△CEF=2S△COB,求点F的坐标;(3)求点D的坐标,并结合图象直接写出不等式﹣x+m≥的解集.五、解答题(三)(每小题9分,共27分)23.一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?24.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.25.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.2019年广东省汕头市潮南区仙港初级中学中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:相反数等于本身的数是0.故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选:D.【点评】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.3.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,4﹣x≠0,解得x≠4.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.【分析】利用树状图法列举出所有可能,进而求出概率.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.【分析】由题意∠1=2∠2,设∠2=x,易证∠AEF=∠1=∠FEA′=2x,构建方程即可解决问题.【解答】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.6.【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=4,∴AB=2DF=8,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=4,∴BF===4.故选:D.【点评】本题考查三角形中位线性质、含30度角的直角三角形性质、直角三角形斜边中线性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.7.【分析】先计算△=(﹣m)2﹣4×1×(﹣1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义即可判断方程根的情况.【解答】解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.【分析】根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx﹣a经过哪几个象限,不经过哪个象限,本题得以解决.【解答】解:∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx﹣a经过第一、二、三象限,不经过第四象限,故选:D.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.9.【分析】根据含30度的直角三角形三边的关系得AB=OC=2cm,再利用扇形面积公式和S阴=S△OBC﹣S扇形OCD进行计算即可.【解答】解:在Rt△BOC中,OA=OC=BC=2,∴∠B=30°,∴AB=OC=2cm,∴S阴=S△OBA﹣S扇形OCA=﹣=(2﹣),故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.关键是根据扇形的面积公式和含30度的直角三角形三边的关系解答.10.【分析】作OG⊥BC于点G,利用平行四边形的性质构造中位线,从而求得OG,在根据勾股定理可得y的解析式,最后判断大致图象.【解答】解:作OG⊥BC于点G,在平行四边形ADCE中,CO=AO,又∵OG∥AB,∴OG=AB=,BG=,∴DG=|2﹣x|,∴y==∴图象是一条开口向上的抛物线,故选:B.【点评】本题是运动型综合题,考查了动点问题的函数图象三角形的中位线,勾股定理等知识,解题关键是构造直角三角形求出OD的平方.二、填空题(每小题4分,共24分)11.【分析】将变形为=×100,再代入计算即可求解.【解答】解:==×100=2.938×100=293.8.故答案为:293.8.【点评】考查了立方根,关键是将变形为×10012.【分析】直接利用同类项的定义得出m,n的值进而得出答案.【解答】解:∵﹣xm+2y6与2xy2n是同类项,∴m+2=1,2n=6,解得:m=﹣1,n=3,故|m﹣n|=4.故答案为:4.【点评】此题主要考查了同类项,正确掌握同类项的定义是解题关键.13.【分析】根据同弧所对的圆周角相等,求出∠DCB=∠A=32°,再根据直径所对的圆周角为90°,求出∠ABD的度数.【解答】解:∵∠DCB=32°,∴∠A=32°,∵AB为⊙O直径,∴∠ADB=90°,在Rt△ABD中,∠ABD=90°﹣32°=58°.故答案为:58°【点评】本题考查了圆周角定理,知道同弧所对的圆周角相等和直径所对的圆周角是90°是解题的关键.14.【分析】方程组两方程相减表示出x﹣y,代入x﹣y=2中求出k的值即可.【解答】解:,①﹣②得:x﹣y=3﹣k,代入x﹣y=2得:3﹣k=2,解得:k=1,故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解: