2016年上海市徐汇区高考数学一模试卷(文科)一.填空题:(本题满分56分,每小题4分)1.(4分)设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的标准方程是.2.(4分)方程的解是.3.(4分)设,则数列{an}的各项和为.4.(4分)函数的单调递增区间是.5.(4分)若函数f(x)的图象与对数函数y=log4x的图象关于直线x+y=0对称,则f(x)的解析式为f(x)=.6.(4分)函数f(x)=|4x﹣x2|﹣a有四个零点,则a的取值范围是.7.(4分)设x、y∈R+且=1,则x+y的最小值为.8.(4分)若三条直线ax+y+3=0,x+y+2=0和2x﹣y+1=0相交于一点,则行列式的值为.9.(4分)在△ABC中,边BC=2,AB=,则角C的取值范围是.10.(4分)已知四面体ABCD的外接球球心O在棱CD上,,CD=2,则A、B两点在四面体ABCD的外接球上的球面距离是.11.(4分)(x3+2x+1)(3x2+4)展开后各项系数的和等于.12.(4分)已知函数f(x)=x2﹣1的定义域为D,值域为{0,1},则这样的集合D最多有个.13.(4分)正四面体的四个面上分别写有数字0,1,2,3把两个这样的四面体抛在桌面上,则露在外面的6个数字之和恰好是9的概率为.14.(4分)设x1,x2是实系数一元二次方程ax2+bx+c=0的两个根,若x1是虚数,是实数,则S=1+=.二.选择题:(本题满分20分,每小题5分)15.(5分)已知向量与不平行,且,则下列结论中正确的是()A.向量与垂直B.向量与垂直C.向量与垂直D.向量与平行16.(5分)若a,b为实数,则“0<ab<1”是“b<”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件17.(5分)(文)设x、y均是实数,i是虚数单位,复数(x﹣2y)+(5﹣2x﹣y)i的实部大于0,虚部不小于0,则复数z=x+yi在复平面上的点集用阴影表示为图中的()A.B.C.D.18.(5分)设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx﹣3的某一个对称中心,并利用对称中心的上述定义,可得到的值为()A.﹣4031B.4031C.﹣8062D.8062三.解答题:(本大题共5题,满分74分)19.(12分)三棱锥S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC=,SB=.(1)证明:SC⊥BC;(2)求三棱锥的体积VS﹣ABC.20.(14分)已知函数f(x)=sin22x﹣sin2xcos2x.(1)化简函数f(x)的表达式,并求函数f(x)的最小正周期;(2)若点A(x0,y0)是y=f(x)图象的对称中心,且,求点A的坐标.21.(14分)已知实数x满足32x﹣4﹣+9≤0且f(x)=log2.(1)求实数x的取值范围;(2)求f(x)的最大值和最小值,并求此时x的值.22.(16分)数列{an}满足a1=5,且(n≥2,n∈N*).(1)求a2,a3,a4;(2)求数列{an}的通项公式;(3)令bn=,求数列{bn}的最大值与最小值.23.(18分)某地拟建造一座大型体育馆,其设计方案侧面的外轮廓如图所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)(0<t≤25);曲线BC是抛物线y=﹣ax2+50(a>0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.假定拟建体育馆的高OB=50(单位:米,下同).(1)若t=20、a=,求CD、AD的长度;(2)若要求体育馆侧面的最大宽度DF不超过75米,求a的取值范围;(3)若a=,求AD的最大值.2016年上海市徐汇区高考数学一模试卷(文科)参考答案与试题解析一.填空题:(本题满分56分,每小题4分)1.(4分)设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的标准方程是y2=8x.【考点】K8:抛物线的性质.菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】先根据准线求出p的值,然后可判断抛物线的标准方程的焦点在x轴的正半轴上进而可设抛物线的标准形式,将p的值代入可得答案.【解答】解:由题意可知:=2,∴p=4且抛物线的标准方程的焦点在x轴的正半轴上故可设抛物线的标准方程为:y2=2px将p代入可得y2=8x.故答案为:y2=8x.【点评】本题主要考查抛物线的标准方程.属基础题.2.(4分)方程的解是x=2.【考点】4H:对数的运算性质.菁优网版权所有【专题】11:计算题.【分析】由方程可得3x﹣5=4,即3x=32,由此求得方程的解.【解答】解:由方程可得3x﹣5=4,即3x=32,解得x=2,故答案为x=2.【点评】本题主要考查对数方程的解法,对数的运算性质应用,属于基础题.3.(4分)设,则数列{an}的各项和为.【考点】89:等比数列的前n项和.菁优网版权所有【专题】11:计算题.【分析】由已知可知=,从而可得数列{an}为公比的等比数列,要求等比数列的各项和,即求前n项和的极限,由求和公式先求前n项和,然后代入求解极限即可【解答】解:∵=,∴=,则数列{an}是以为首项以为公比的等比数列∴=所以数列的各项和S==故答案为【点评】本题所涉及的知识:等比数列定义在判断等比数列中的应用,等比数列的求和公式,等比数列的各项和与前n项和是不同的概念,要注意区别4.(4分)函数的单调递增区间是[kπ﹣,kπ+],k∈Z.【考点】H2:正弦函数的图象.菁优网版权所有【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.【分析】由条件利用正弦函数的单调性,得出结论.【解答】解:对于函数,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,故函数的增区间为,故答案为:[kπ﹣,kπ+],k∈Z.【点评】本题主要考查正弦函数的单调性,属于基础题.5.(4分)若函数f(x)的图象与对数函数y=log4x的图象关于直线x+y=0对称,则f(x)的解析式为f(x)=y=﹣4﹣x.【考点】3A:函数的图象与图象的变换;4N:对数函数的图象与性质.菁优网版权所有【专题】11:计算题;31:数形结合.【分析】先设f(x)上一点(x,y),求这个点关于x+y=0的对称点,则根据题意该对称点在函数y=log4x的图象上,满足函数y=log4x的解析式,从而可求出点(x,y)的轨迹方程【解答】解:设函数f(x)的图象上一点(x,y),则点(x,y)关于x+y=0的对称点(x',y')在对数函数y=log4x的图象由题意知,解得x'=﹣y,y'=﹣x又∵点(x',y')在对数函数y=log4x的图象∴﹣x=log4(﹣y)∴﹣y=4﹣x∴y=﹣4﹣x故答案为:y=﹣4﹣x【点评】本题考查函数的图象与性质,求函数的解析式.解题的关键是会求点个关于直线的对称点.属简单题6.(4分)函数f(x)=|4x﹣x2|﹣a有四个零点,则a的取值范围是(0,4).【考点】53:函数的零点与方程根的关系.菁优网版权所有【专题】51:函数的性质及应用.【分析】由题意可得,直线y=a和函数y=|4x﹣x2|的图象有4个交点,数形结合求得a的取值范围.【解答】解:∵函数f(x)=|4x﹣x2|﹣a有四个零点,故直线y=a和函数y=|4x﹣x2|的图象有4个交点,如图所示:结合图象可得0<a<4,故答案为(0,4).【点评】本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题.7.(4分)设x、y∈R+且=1,则x+y的最小值为16.【考点】7F:基本不等式及其应用.菁优网版权所有【专题】11:计算题.【分析】将x、y∈R+且=1,代入x+y=(x+y)•(),展开后应用基本不等式即可.【解答】解:∵=1,x、y∈R+,∴x+y=(x+y)•()==10+≥10+2=16(当且仅当,x=4,y=12时取“=”).故答案为:16.【点评】本题考查基本不等式,着重考查学生整体代入的思想及应用基本不等式的能力,属于中档题.8.(4分)若三条直线ax+y+3=0,x+y+2=0和2x﹣y+1=0相交于一点,则行列式的值为1.【考点】IM:两条直线的交点坐标;O1:二阶矩阵.菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5R:矩阵和变换.【分析】先由三条直线ax+y+3=0,x+y+2=0和2x﹣y+1=0相交于一点,求出a,再由二阶行列式展开法则能求出的值.【解答】解:联立,得x=﹣1,y=﹣1,∵三条直线ax+y+3=0,x+y+2=0和2x﹣y+1=0相交于一点,∴直线ax+y+3=0过点(﹣1,﹣1),∴﹣a﹣1+3=0,解得a=2,∴=a﹣1=2﹣1=1.故答案为:1.【点评】本题考查二阶行列式的值的求法,是基础题,解题时要认真审题,注意二阶行列式展开法则的合理运用.9.(4分)在△ABC中,边BC=2,AB=,则角C的取值范围是(0,].【考点】HR:余弦定理.菁优网版权所有【专题】15:综合题.【分析】利用余弦定理构建方程,利用判别式可得不等式,从而可求角C的取值范围.【解答】解:由题意,设AC=b,3=b2+4﹣4bcosC∴b2﹣4bcosC+1=0∴△=16cos2C﹣4≥0∵AB<BC∴C不可能是钝角∴∴角C的取值范围是(0,]故答案为:(0,]【点评】本题考查余弦定理的运用,考查解不等式,解题的关键是利用余弦定理构建方程,利用判别式得不等式.10.(4分)已知四面体ABCD的外接球球心O在棱CD上,,CD=2,则A、B两点在四面体ABCD的外接球上的球面距离是.【考点】L*:球面距离及相关计算.菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5U:球.【分析】根据球心到四个顶点距离相等可推断出O为CD的中点,且OA=OB=OC=OD,进而在△A0B中,利用余弦定理求得cos∠AOB的值,则∠AOB可求,进而根据弧长的计算方法求得答案.【解答】解:球心到四个顶点距离相等,故球心O在CD中点,则OA=OB=OC=OD=1,再由AB=,在△A0B中,利用余弦定理cos∠AOB==﹣,则∠AOB=,则弧AB=•1=.故答案为:.【点评】本题主要考查了余弦定理的应用、四面体外接球的性质等,考查了学生观察分析和基本的运算能力.11.(4分)(x3+2x+1)(3x2+4)展开后各项系数的和等于28.【考点】DA:二项式定理.菁优网版权所有【专题】38:对应思想;4R:转化法;5P:二项式定理.【分析】根据题意,令x=1,代入多项式即可求出展开式中各项系数的和.【解答】解:(x3+2x+1)(3x2+4)展开后含有字母x,令x=1,则展开式中各项系数的和为:(13+2×1+1)(3×12+4)=28.故答案为:28.【点评】本题考查了求多项式展开式的各项系数和的应用问题,解题时应利用x=1进行计算,是基础题.12.(4分)已知函数f(x)=x2﹣1的定义域为D,值域为{0,1},则这样的集合D最多有9个.【考点】33:函数的定义域及其求法;3V:二次函数的性质与图象.菁优网版权所有【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据值域中的几个函数值,结合函数表达式推断出定义域中可能出现的几个x值,再加以组合即可得到定义域D的各种情况.【解答】解:∵f(x)=x2﹣1,∴f(±1)=0,f(±)=1,因此,定义域D有:{1,},{﹣1,﹣},{﹣1,},{1,﹣},{﹣1,1,},{﹣1,1,﹣},{1,,﹣},{﹣1,,﹣},{﹣1,1,,﹣}共9种情况.故答案为:9.【点评】本题给出二次函数的一个值域,要我们求函数的定义域最多有几个,着重考查了函数的定义与进行简单合情推理等知识,属于基础题.13.(4分)正四面体的四个面上分别写有数字0,1,2,3把两个