《高等流体力学》习题集

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《高等流体力学》复习题一、基本概念1.什么是理想流体正压流体,不可压缩流体[答]:教材P57当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地看为是无粘性的,这样无粘性的流体称为理想流体。内部任一点的压力只是密度的函数的流体,称为正压流体。流体的体积或密度的相对变化量很小时,一般可以看成是不可压缩的,这种流体就被称为不可压缩流体。2.什么是定常场;均匀场;并用数学形式表达。[答]:如果一个场不随时间的变化而变化,则这个场就被称为定常场。其数学表达式为:)(r如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r,则这个场就被称为均匀场。其数学表达式为:)(t3.理想流体运动时有无切应力粘性流体静止时有无切应力静止时无切应力是否无粘性为什么[答]:理想流体运动时无切应力。粘性流体静止时无切应力。但是,静止时无切应力,而有粘性。因为,粘性是流体的固有特性。4.流体有势运动指的是什么什么是速度势函数无旋运动与有势运动有何关系[答]:教材P119-123如果流体运动是无旋的,则称此流体运动为有势运动。对于无旋流动来说,其速度场V总可以由某个速度标量函数(场)),(tr的速度梯度来表示,即V,则这个标量函数(场)),(tr称为速度场V的速度势函数。无旋运动与有势运动的关系:势流运动与无旋运动是等价的,即有势运动是无旋的,无旋运动的速度场等同于某个势函数的梯度场。5.什么是流函数存在流函数的流体具有什么特性(什么样的流体具有流函数)[答]:6.平面流动中用复变位势描述的流体具有哪些条件(性质)[答]:教材P126-127理想不可压缩流体的平面无旋运动,可用复变位势描述。7.什么是第一粘性系数和第二粘性系数在什么条件下可以不考虑第二粘性系数Stokes假设的基本事实依据是什么[答]:教材P89第一粘性系数μ:反映了剪切变形对应力张量的贡献,因此称为剪切变形粘性系数;第二粘性系数μ’:反映了体变形对应力张量的贡献,因而称为体变形粘性系数。对于不可压缩流体,可不考虑第二粘性系数。Stokes假设的基本事实依据:平均法向正应力就是压力函数的负值,即体变形粘性系数032。8.从运动学观点看流体与固体比较有什么不同[答]:教材P55若物质分子的平均动能远小于其结合能,即Emv221,这时物质分子间所形成的对偶结构十分稳定,分子间的运动被严格地限定在很小的范围内,物质的分子只能在自己的平衡位置周围振动。这时物质表现为固态。若物质分子的平均动能与其结合能大致相等,即Emv221,其分子间的对偶结构不断地遭到破坏,又不断地形成新的对偶结构。这时,物质分子间不能形成固定的稳定对偶结构,而表现出没有固定明确形状的液态。若物质分子的平均动能远大于其结合能,即Emv221,物质几乎不能形成任何对偶结构。这时,物质表现为气态。9.试述流体运动的Helmholts速度分解定律。[答]:教材P65可变形流体微团的速度分解:流体微团一点的速度可分解为平动速度分量与转动运动分量和变形运动分量之和,这称为流体微团的Helmholts速度分解定理rSrVV010.流体微团有哪些运动形式它们的数学表达式是什么[答]:rSrVV01)平动运动:0VV2)转动运动:rVrot213)变形运动:rS11.描述流体运动的基本方法有哪两种分别写出其描述流体运动的速度、加速度的表达式。[答]:教材P58-60描述流体运动的基本方法:1)拉格朗日方法:对流体介质的每一质点进行跟踪,着眼于流体介质中的每个质点,需要对流体介质中的每个质点进行区别。各质点速度表达式:ttcbartcbaV),,,(),,,(各质点加速度表达式:22),,,(),,,(ttcbartcbaV2)欧拉方法:定点观察描述流场的运动,着眼于空间的定点,而不是流体质点。速度表达式:332132321213211321),,,(),,,(),,,(),,,(),(etxxxuetxxxuetxxxutxxxVtrVV加速度表达式:VVtVVtVxuuturVVtVtrrVtVdtVdjiji)(12.什么是随体导数(加速度)、局部导数(加速度)及位变导数(加速度)分别说明0dtvd,0tv及0vv的物理意义[答]:教材P60随体导数:流体质点在其运动过程中的加速度所对应的微商,叫做随体导数;局部导数:流体位置不变时的加速度所对应的微商,叫做局部导数;位变导数:质点位移所造成的加速度所对应的微商,叫做位变导数。物理意义:0dtvd:随体导数为0,流体质点在其运动过程中的加速度为0;0tv:局部导数为0,流体位置不变时的加速度为0,流体是定常流动;0vv:位变导数为0,流体质点位移所造成的加速度为0,流体速度分布均匀。13.什么是流体的速度梯度张量试述其对称和反对称张量的物理意义。[答]:教材P65-67对流体微团M,其中or处的速度为0V,那么r处的速度可以表示为jjxxVVV0,或者jjiiixxuuu0,即)(0VrVV。这里,Vxuji为二阶张量,是速度的梯度,因此称之为速度梯度张量。速度梯度张量分解为对称和反对称部分:SAxuVij反对称张量的物理意义:反对称张量表征了流体微团旋转运动,所对应的矢量为流体微团的角速度矢量。kijkzvywzuxwzvywyuxvzuxwyuxvA0000)(21)(21)(210)(21)(21)(210121323Vroteeezyx21321对称张量的物理意义:对称张量表征了流体微团的变形运动。其中,对角线上的元素321,,表示了流体单元微团在3个坐标轴上的体变形分量,而三角元素32121,21,21表示了流体单元微团在3个坐标平面上的角变形分量的一半。312123231212121212121)(21)(21)(21)(21)(21)(21zwzvywzuxwzvywyvyuxvzuxwyuxvxuAXOxvyuxwzuywzvYZ反对称部分XYZOxuyvzw14.流体应力张量的物理意义是什么它有什么性质[答]:教材P71流体应力张量的物理意义:应力张量表示了坐标面的三个面力密度矢量zyxppp,,的九个分量}{ijp组成的一二阶张量,即为面力密度张量。应力张量的性质:应力张量是对称张量,具有对称性应力张量具有二阶对称张量的性质(1)应力张量的几何表示为应力椭球面,即二次型1222)(222zxpyzpxypzpypxprPrzxyzxyzzyyxx(2)应力张量有三个互相垂直的主轴方向,即是应力椭球的三个对称的直径的方向。在主轴坐标系下,应力张量具有标准形式:'000'000'332211pppP(3)应力张量的三个不变量为:XYOyuxwzuywzvZxv反对称部分223112123323122322113312312332211321223122322111133332223322111pppppppppppppppIpppppppppIpppInnpmmp15.某平面上的应力与应力张量有什么关系nmmnpp的物理含义是什么[答]:教材P71应力np与应力张量P的关系:Pnpnpijn,即:空间某点处任意平面上的应力等于这点处的应力张量与该平面法向单位矢量的左向内积。nmmnpp的物理意义:ijijjjiijijinnmnpmmpnmpnmpmPnp)(mnmpnpnPm)(应力张量的对称性,使得在以n为法线的平面上的应力np在m方向上的投影等于(=)在以m为法线的平面上的应力mp在n方向上的投影。16.流体微团上受力形式有哪两种它们各自用什么形式的物理量来表达[答]:教材P68-71(1)质量力,也称体力,这种力作用在物质中每个质点上,其大小与每个质点的质量成正比。作用于某物质体上质量力的合力将通过该物质体的质心。)(rFf,)(rFf)(rF为质量力密度,与位置有关。(2)面力,作用于流体微团表面S上的力。Sppn,SnSppnp为面力分布密度,Pnpnpijn17.什么是广义的牛顿流体和非牛顿流体[答]:教材P86-87牛顿内摩擦定律:流体微团的运动变形的的大小与其上所受的应力存在线性关系。遵从或近似遵从牛顿内摩擦定律的一类流体称为牛顿流体。不遵从牛顿内摩擦定律的流体称为非牛顿流体。广义牛顿内摩擦定律:偏应力张量的各分量与速度梯度张量的各分量间存在线性关系。遵从或近似遵从广义牛顿内摩擦定律的一类流体称为广义牛顿流体。18.试述广义牛顿内摩擦定律的物理意义及相应的数学表达式[答]:教材P87广义牛顿内摩擦定律的物理意义:偏应力张量的各分量与速度梯度张量的各分量间存在线性关系。数学表达式:lkijkllkijklklijklijacscxvc,其中,二阶张量lks和lka市速度梯度张量的对称和反对称部分,而四阶张量ijklc称为动力粘性系数张量。19.什么是层流运动、紊流(湍流)运动和临界雷诺数圆管中层流和紊流运动的速度分布规律是什么[答]:层流流动是平稳有规律的流动状态,流体介质各部分之间分层流动,互不掺混,流体内部的微团具有连续而平滑的迹线,流场中各种有关物理量(参数)的变化较为缓慢,表现出明显的连续性和平稳性。湍流流动是极不规则的流动形态,流体介质各部分之间,各层之间有着剧烈的掺混,其流体内部微团的运动迹线很不规则,杂乱无章,表征流体运动状态的各种物理量也表现出不同程度的跃变和随机性。雷诺数:流体运动中,惯性力与粘性力的无量纲比值vdvdRe下临界雷诺数:从湍流状态到层流状态的转折点;上临界雷诺数:从层流状态到湍流状态的转折点。圆管中层流和紊流运动的速度分布规律:层流:)(4220rRlppul(1)定常流动的速度沿径向的分布规律,由式(1)可以看出,流动截面上的速度分布是一抛物回转面。湍流:光滑圆管中的速度分布:394.5)lg(756.5**yUUu粗糙圆管中的速度分布与光滑圆管中的速度分布相同,只是改变方程的常数。20.流体的阻力可分为哪几种管路中的阻力通常分为哪几种[答]:粘性时产生阻力的根本原因,依据阻力产生的不同机理,可分为:摩擦阻力和压差阻力。管路中的阻力通常分为:沿程阻力(即摩擦阻力)和局部阻力。21.试说明粘性流体流动的三个基本性质。[答]:教材P170-174(1)粘性运动的有旋性粘性流体运动时,有旋是绝对的,粘性流体的无旋运动是不存在的。(2)运动过程中有能量的损耗性在粘性流动中永远伴随着机械能的损耗。这部分能量转换成热能形式传递给流体介质及相邻的固壁,使其温度升高而耗散。(3)粘性涡旋运动的扩散性在粘性流体中,涡旋强的地方要向涡旋弱的地方传送涡量,直至涡量相等为止。22.使流体涡量产生变化的因素有哪些其中哪些是流体运动的内在因素,哪些是外在因素[答]:流体涡量产生变化的因素有:(1)质量力无势;(2)流体不正压;(3)粘性剪切应力;(4)流体微团的体积变化;(5)流体涡线微元的变形(涡线的拉伸

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功