第三章时间序列平滑预测法•时间序列预测法,是将预测对象的历史数据按照时间的顺序排列成为时间序列,然后分析它随时间的变化趋势,外推预测对象的未来值。这样,就把影响预测对象变化的一切因素由“时间”综合起来描述了。•时间序列分析预测可分为确定性时间序列预测法和随机性时间序列预测法。第1节时间序列概述•时间序列:是指某一统计指标数值按时间先后顺序排列而形成的数列。例如:–国内生产总值(GDP)按年度顺序排列起来的数列;–某种商品销售量按季度或月度排列起来的数列等等都是时间序列。–时间序列一般用y1,y2,…,yt,…–表示,t为时间。在社会经济统计中,编制和分析时间序列具有重要的作用:它为分析研究社会经济现象的发展速度、发展趋势及变化规律,提供基本统计数据。通过计算分析指标,研究社会经济现象的变化方向、速度及结果。将不同的时间序列同时进行分析研究,可以揭示现象之间的联系程度及动态演变关系。建立数学模型,揭示现象的变化规律并对未来进行预测。一、时间序列的因素分析时间序列分析是一种动态的数列分析,其目的在于掌握统计数据随时间变化的规律。时间序列中每一时期的数值都是由许多不同的因素同时发生作用后的综合结果。在进行时间序列分析时,人们通常将各种可能发生影响的因素按其性质不同分成四大类:长期趋势、季节变动、循环变动和不规则变动。长期趋势长期趋势是指由于某种根本性因素的影响,时间序列在较长时间内朝着一定的方向持续上升或下降,以及停留在某一水平上的倾向。它反映了事物的主要变化趋势。季节变动季节变动是指由于受自然条件和社会条件的影响,时间序列在一年内随着季节的转变而引起的周期性变动。经济现象的季节变动是季节性的固有规律作用于经济活动的结果。循环变动循环变动一般是指周期不固定的波动变化,有时是以数年为周期变动,有时是以几个月为周期变化,并且每次周期一般不完全相同。循环变动与长期趋势不同,它不是朝单一方向持续发展,而是涨落相间的波浪式起伏变动。与季节变动也不同,它的波动时间较长,变动周期长短不一,不规则变动不规则变动是指由各种偶然性因素引起的无周期变动。不规则变动又可分为突然变动和随机变动。所谓突然变动,是指诸如战争、自然灾害、地震、意外事故、方针、政策的改变所引起的变动;随机变动是指由于大量的随机因素所产生的影响。不规则变动的变动规律不易掌握,很难预测。二、时间序列的组合形式时间序列由长期趋势、季节变动、循环变动和不规则变动四类因素组成。四类因素的组合形式,常见的有以下几种类型:1、加法型yt=Tt+St+Ct+It2、乘法型yt=Tt·St·Ct·It3、混合型yt=Tt·St+Ct+Ityt=St+Tt·Ct·It其中:yt为时间序列的全变动;Tt为长期趋势;St为季节变动;Ct为循环变动;It为不规则变动。第2节移动平均法•移动平均法是根据时间序列资料逐项推移,依次计算包含一定项数的时序平均数,以反映长期趋势的方法。当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析、预测序列的长期趋势。•移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等。一、简单移动平均法设时间序列为:y1,y2…,yt,…;简单移动平均公式(3.2.1)为:t≥N(3.2.1)式中:Mt为t期移动平均数;N为移动平均的项数。式(3.2.1)表明当t向前移动一个时期,就增加一个新数据,去掉一个远期数据,得到一个新的平均数。由于它不断的“吐故纳新”,逐期向前移动,所以称为移动平均法。NyyyMNtttt11由于移动平均可以平滑数据,消除周期变动和不规则变动的影响,使长期趋势显示出来,因而可以用于预测。预测公式为(3.2.3)即以第t期移动平均数作为第t+1期的预测值。例3.2.1:某商店1991年-2002年实现利润如表3.2.1所示。试用简单移动平均法,预测下一年的利润。ttMy1解:分别取N=3和N=4,按预测公式和计算3年和4年移动平均预测值。其结果列于表3.2.1中,其预测曲线如图3.2.1。3211ttttyyyy43211tttttyyyyy年份利润3年移动平均预测值4年移动平均预测值预测值相对误差%预测值相对误差%1991120.871992125.581993131.661994130.42126.03673.361995130.38129.220.89127.13252.491996135.54130.823.48129.514.451997144.25132.11338.411328.491998147.82136.72337.51135.14758.571999148.57142.53674.06139.49756.112000148.61146.881.16144.0453.072001149.76148.33330.95147.31251.632002154.56148.983.61148.693.8150.9767150.375表3.2.1某商店1991年-2002年利润及移动平均预测值表单位:万元1001101201301401501601357911原始值三年移动平均四年移动平均图3.2.1某商店1991年-2002年利润及移动平均预测值图•在实用上,一个有效的方法是取几个N值进行试算,比较他们的预测误差,从中选择最优的。•简单移动平均法只适合做近期预测,即只能对后续相邻的那一项进行预测。二、加权移动平均法在简单移动平均公式中,每期数据在求平均时的作用是等同的。但是,每期数据所包含的信息量不一样,近期数据包含着更多关于未来情况的信息。因此,把各期数据等同看待是不尽合理的,应考虑各期数据的重要性,对近期数据给予较大的权重,这就是加权移动平均法的基本思想。设时间序列为:y1,y2…,yt,…;加权移动平均公式为:t≥N(3.2.4)式中:Mtw为t期加权移动平均数;wi为yt-i+1的权数,它体现了相应的yt在加权平均数中的重要性。利用加权移动平均数来做预测,其预测公式为:(3.2.5)即以第t期加权移动平均数作为第t+1期的预测值。例3.2.2对于例3.2.1,试用加权移动平均法预测2003年的利润。NNtNttt211121twtMy1解:取w1=3,w2=2,w3=1,按预测公式:计算三年加权移动平均预测值,其结果列于表3.2.2中。2003年某企业利润的预测值为:12323211ttttyyyy968.151661.14876.149256.15432003y年份利润3个月移动平均预测值相对误差(%)1991120.871992125.581993131.661994130.42127.8351.981995130.38130.0270.271996135.54130.6073.641997144.25132.9677.821998147.82139.0355.941999148.57144.5832.682000148.61147.60.682001149.76148.4650.862002154.56149.1783.482003年预测值151.968表3.2.2某商店1991年-2002年利润及加权移动平均预测值表单位:万元三、趋势移动平均法简单移动平均法和加权移动平均法,在时间序列没有明显的趋势变动时,能够准确反映实际情况。但当时间序列出现直线增加或减少的变动趋势时,用简单移动平均法和加权移动平均法来预测就会出现滞后偏差。因此,需要进行修正,修正的方法是作二次移动平均,利用移动平均滞后偏差的规律来建立直线趋势的预测模型。这就是趋势移动平均法。一次移动的平均数为:在一次移动平均的基础上再进行一次移动平均就是二次移动平均,其计算公式为(3.2.6)它的递推公式为(3.2.7)NyyyMNtttt111NMMMMNtttt111112NMMMMNtttt11222利用趋势移动平均法进行预测,不但可以进行近期预测,而且还可以进行远期预测,但一般情况下,远期预测误差较大。在利用趋势移动平均法进行预测时,时间序列一般要求必须具备较好的线性变化趋势,否则,其预测误差也是较大的。第3节指数平滑法•§3.2介绍的移动平均法存在两个不足之处。一是存储数据量较大,二是对最近的N期数据等权看待,而对t-T期以前的数据则完全不考虑,这往往不符合实际情况。指数平滑法有效地克服了这两个缺点。它既不需要存储很多历史数据,又考虑了各期数据的重要性,而且使用了全部历史资料。因此它是移动平均法的改进和发展,应用极为广泛。•指数平滑法根据平滑次数的不同,又分为一次指数平滑法、二次指数平滑法和三次指数平滑法等。一次指数平滑法预测模型:(3.3.4)也就是以第t期指数平滑值作为t+1期预测值。在进行指数平滑时,加权系数的选择是很重要的。由式(3.3.4)可以看出,α的大小规定了在新预测值中新数据和原预测值所占的比重。α值越大,新数据所占的比重就愈大,原预测值所占的比重就愈小,反之亦然。tttyyy11α值应根据时间序列的具体性质在0-1之间选择。具体如何选择一般可遵循下列原则:(1)如果时间序列波动不大,比较平稳,则α应取小一点,如(0.1-0.3)。以减少修正幅度,使预测模型能包含较长时间序列的信息。(2)如果时间序列具有迅速且明显的变动倾向,则α应取大一点,如(0.6-0.8)。使预测模型灵敏度高一些,以便迅速跟上数据的变化。在实用上,类似于移动平均法,多取几个α值进行试算,看哪个预测误差较小,就采用哪个α值作为权重。初始值的确定用一次指数平滑法进行预测,除了选择合适的α外,还要确定初始值S0(1)。初始值是由预测者估计或指定的。当时间序列的数据较多,比如在20个以上时,初始值对以后的预测值影响很小,可选用第一期数据为初始值。如果时间序列的数据较少,在20个以下时,初始值对以后的预测值影响很大,这时,就必须认真研究如何正确确定初始值。一般以最初几期实际值的平均值作为初始值。例3.3.1以例3.2.1为例,试预测2003年该企业利润。解:采用指数平滑法,并分别取α=0.2,0.5和0.8进行计算,初始值即按预测模型计算各期预测值,列于表3.3.1中。1.21922110yyStttyyy111.219101Sy年份国内生产总值yt预测值tyˆα=0.2预测值tyˆα=0.5预测值tyˆα=0.81990227.7219.1219.1219.11991210.5220.82223.4225.981992208.6218.756216.95213.5961993224.8216.7248212.775209.59921994228.9218.3398218.7875221.75981995236.7220.4519223.8438227.4721996232.4223.7015230.2719234.85441997243.6225.4412231.3359232.89091998238.4229.073237.468241.45821999251.2230.9384237.934239.01162000242.9234.9907244.567248.76232001248.6236.5726243.7335244.07252002246.3238.978246.1667247.6945240.4424246.2334246.5789表3.3.1某企业利润及指数平滑预测值计算表单位:万元二次指数平滑法一次指数平滑法虽然克服了移动平均法的两个缺点。但当时间序列的变动出现直线趋势时,用一次指数平滑法进行预测,仍存在明显的滞后偏差。因此,也必须加以修正。修正的方法与趋势移动平均法相同,即