02468101214161850-6070-8090-1000%5%10%15%20%25%30%35%`第八章时间序列计量模型第一节时间序列的基本概念一、时间序列数据的平稳性随机变量是刻画随机现象的有力工具。随机变量的动态变化过程称为随机过程。一般地,对于每一特定的t(t∈T),Yt为一随机变量,称这一族随机变量{Yt}为一个随机过程。若T为一连续区间,则{Yt}为连续型随机过程。若T为离散集合,则{Yt}为离散型随机过程。离散型时间指标集的随机过程通常称为随机型时间序列,简称为时间序列。经济分析中常用的时间序列数据都是经济变量随机序列的一个实现。时间序列的平稳性(stationaryprocess)是时间序列经济计量分析中的非常重要问题。时间序列的平稳性是指时间序列的统计规律不会随着时间的推移而发生变化。就是说产生变量时间序列数据的随机过程的特征不随时间变化而变化。用平稳时间序列进行计量分析,估计方法和假设检验才有效。GDP的时间序列19901991199219931994199519961997Y1Y2Y3Y4Y5Y6Y7Y818547.921617.826638.134634.446759.458478.167884.674462.6一个平稳的时间序列过程的概率分布与时间的位移无关。如果从序列中任意取一组随机变量并把这个序列向前移动h个时间,其联合概率分布保持不变。这就是严格平稳的含义,其严格定义如下:平稳随机过程:对一个随过程{Yt:t=1,2,…},h为整数,如的联合分布与的联合分布相同,那么随机过程{Yt}就是平稳的。tmttYYY,,,21htmhthtYYY,,,21平稳性的特征就是要求所有时间相邻项之间的相关关系具有相同的性质。判断一个时间序列数据是否产生于一个平稳过程是很困难的。通常而言,时间序列数据是弱平稳的就足够了。因此,弱平稳是时间序列分析中的常用平稳性概念。弱平稳也称为协方差平稳过程。弱平稳是指随机过程{Yt}的均值和方差不随时间的推移而变化,并且任何两时期之间的协方差仅依赖于该两时期的间隔,而与t无关。即随机过程{Yt}满足(1)均值,μ为与时间t无关的常数。(2)方差为与时间t无关的常数。(3)协方差,只与时间间隔h有关,与时间t无关。则称{Yt}为弱平稳过程。在时间序列计量分析中,平稳过程通常指的是弱平稳。)(tYE22,)(tYVarhhttYYCov),(如果一个时间序列是不平稳的,就称它为非平稳时间序列。也就是说,时间序列的统计规律随时间的推动而发生变化。此时,要通过回归分析研究某个变量在跨时间区域的对一个或多变量的依赖关系就是困难的,也就是说当时间序列为非平稳时,就无法知道一个变量的变化如何影响另一个变量。在时间序列计量分析实践中,时间序列的平稳性是根本性前提,因此,在进经济计量分析前,必须对时间序列数据进行平稳性检验。二、平稳性的单位根检验时间序列的平稳性可通过图形和自相关函数进行检验。在现代,单位根检验方法为时间序列平稳性检验的最常用方法。1.单位根检验(unitroottest)时间序列中往往存在滞后效应,即前后变量彼此相关。对于时间序列Yt而言,最典型的状况就是一阶自回归形式AR(1),即Yt与Yt-1相关,而与Yt-2,Yt-3,…无关。其表达式为(8.1)其中,vt为经典误差项,也称之为白噪声。tttvYY1如果式(8.1)中ρ=1,则(8.2)式(8.2)中Yt称为随机游走序列。随机游走序列的特征为:Yt以前一期的Yt-1为基础,加上一个均值为零且独立于Yt-1的随机变量。随机游走的名字正是来源于它的这个特征。tttvYY1对式(8.2)进行反复迭代,可得(8.3)对式(8.3)取期望可得(8.4)随机游走时间序列的期望值与t无关。011YvvvYttt1t),()()()()()(0011YEYEvEvEvEYEttt假定Y0非随机,则,因此(8.5)式(8.5)表明随机游走序列的方差是时间t的线性函数,说明随机游走过程是非平稳的。tvVarvVarvVarYVarvttt211)()()()(0)(0YVar表达时间序列前后期关系的最一般模型为m阶自回归模型AR(m)。(8.6)引入滞后算子L,(8.7)tmtmtttvYYYY2211mttmttttYYLYYLYLY,,,221则式(8.6)变换为(8.8)记为则称多项式方程为AR(m)的特征方程。可以证明,如果该特征方程的所有根在单位圆外(根的模大于1),则AR(m)模型是平稳的。212(1)mmttLLLYv0)1()(221mmZZZZ)1()(221mmLLLL对于AR(1)过程。(8.9)vt为经典误差项,如果ρ=1,则Yt有一个单位根,称Yt为单位根过程,序列Yt是非平稳的。因此,要判断某时间序列是否平稳可通过判断它是否存在单位根,这就是时间序列平稳性的单位根检验。tttvYY1检验一个时间序列Yt的平稳性,可通过检验一阶自回归模型中的参数ρ是否小于1。或者检验另一种表达形式(8.10)中参数γ是否小于0。式(8.9)中的参数ρ=1时,时间序列Yt是非平稳的。式(8.10)中,γ=0时,时间序列Yt是非平稳的。t1-t1vY)1(tttvYY2.DF检验要检验时间序列的平稳性,可通过t检验完成假设检验。即对于下式(8.11)要检验该序列是否含有单位根。设定原假设为:ρ=1,则t统计量为(8.12)tttvYY1)ˆ(1ˆSet但是,在原假设下(序列非平稳),t不服从传统的t分布,因此t检验方法就不再适用。Dickey和Fuller于1976年提出了这一情况下t统计量服从的分布(此时表示为τ统计量),即DF分布,因此该检验方法称为DF检验。该方法采用OLS法估计式(8.11),计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较。如果t统计量的值小于临界值(左尾单侧检验),就意味着ρ足够小,拒绝原假设:ρ=1,判别时间序列Yt不存在单位根,是平稳的。Dickey和Fuller研究认为DF检验的临界值与数据序列的生成过程以及回归模型的类型有关。因此,他们针对以下三种模型编制了DF分布表。(1)一阶自回归模型(8.13)(2)包含常数项的模型(8.14)(3)包含常数项和时间趋势项的模型(8.15)DF检验常用的表达式为如下的差分表达式,即tttvYY1tttvYY1tttvYtY1DF检验常用的表达式为如下的差分表达式,即(8.16)令γ=ρ-1,则(8.17)同理,可得另外两种模型为(8.18)(8.19)1(1)tttYYv1tttYYv1tttYYv1tttYtYv对于式(8.17)、(8.18)、(8.19)而言,对应的原假设和备择假设为(非平稳)(平稳)DF检验的判别规则是:DF≥临界值,则Yt非平稳,D临界值,Yt则是平稳的。0:0H0:0H3.ADF检验进行DF检验时,假定误差项为经典误差项,不存在自相关,即时间序列是一阶自相关过程AR(1)。但多数时间序列经济计量模型均不能满足这一条件,使用OLS法进行参数估计通常表现为随机误差项为自相关,导致DF检验无效。为了保证单位根检验的有效性,Dickey和Fuller对DF检验进行扩充,形成了ADF(augmentDickey-Fullertest)。ADF检验是通过如下三个模型完成的(1)(8.20)(2)(8.21)(3)(8.22)11mttititiYYYv11mttititiYYYv11mttititiYtYYv模型(3)中t是时间变量。原假设都是,即存在单位根。ADF检验的原理与DF检验相同,模型不同时,检验临界值亦不同。实际检验时,首先对模型(3)进行单位根检验,然后模型(2)、模型(1)。在此过程中,只要“不存在单位根”的结论出现,检验就结束。否则就一直检验到模型(1)。0:0H【例8.1】检验中国1985-2005年城镇居民家庭人均实际消费支出与实际可支配收入的平稳性。表8.1中国1985-2005年城镇居民家庭人均实际消费支出与实际可支配收入单位:元由于城镇居民家庭人均实际消费支出与实际可支配收入均为有长期趋势的时间序列,因此应选用模型(3)进行ADF检验。检验结果如表8.2所示。设X为居民家庭人均实际可支配收入,Y为居民家庭人均实际消费支出。表8.2时间序列平稳性检验表变量ADF检验值显著性水平临界值检验结果XY0.0790.2515%5%-3.675-3.675不平稳不平稳由检验结果可以看出,ADF检验的τ统计量均为正值,大于临界值,因此不能拒绝原假设,序列X,Y均存在单位根,居民家庭人均实际消费支出Y与实际可支配收入X均为不平稳时间序列。第二节单整、趋势平稳与差分平稳随机过程一、单整对于随机游走序列,其一阶差分为(8.23)由于是一个白噪声序列,因此差分后时间序列{}是平稳的。ttttvYYY1tY如果一个时间序列经过一次差分后变为平稳的序列,则称该时间序列是一阶单整序列,记为{Yt}~I(1)。一般地,如果序列{Yt}经过d次差分后平稳,则称该序列是d阶单整,记为{Yt}~I(d),如果时序列本身是平稳的,称为0阶单整序列,记为{Yt}~I(0)。在现实经济系统中,多数经济变量的时间序列是非平稳的,如GDP、财政收入、居民收入等。只有少数时间序列是平稳的,如利率、通货膨胀率等。多数非平稳的时间序列经过一次或多次差分可变为平稳的。也有少数时间序列不能通过差分变为平稳的,称这类序列为非单整时间序列。【例8.2】检验例8.1中居民家庭人均实际消费支出Y与实际可支配收入X的单整性。使用ADF检验,结果如表8.3所示。表8.3时间序列单整性检验表变量ADF检验值显著性水平临界值检验结果X二次差分Y二次差分-4.902-4.3055%5%-3.712-3.712平稳平稳由表8.3的检验结果可以看出ADF检验的τ统计量均小于临界值,因此拒绝原假设,序列X,Y的二次差分序列均不存在单位根,为平稳序列。因此,居民家庭人均实际消费支出Y与实际可支配收入X均为二阶单整序列,即I(2)序列。二、趋势平稳与差分平稳随机过程经济系统中存在一些时间序列,虽然在经济意义上彼此不相关,但由于二者表现出共同的变化趋势,当对它们进行回归时往往表现出较高的拟合优度和统计显著性。但这种回归结果并没有实际意义,这是一种虚假的回归,称为伪回归。伪回归就是对于两个独立的一阶单整序I(1)进行回归时,常常会得到一个显著的t估计量。例如,{Xt}和{Yt}分别为相互独立的随机游走序列。,,at,et为白噪声,且相互独立。这就意味着{Xt}和{Yt}是相互独立的,如果Yt对Xt做回归,即,因为Xt,Yt彼此独立,回归系数应该是不显著的,即原假设是不能拒绝的。tttaXX1ttteYY1ttXY21ˆˆˆ0:20H但是,葛兰杰和纽博尔德(GrangerandNewbold,1974)通过模拟证明事实并非如此,即使与是彼此独立的,在很大比例的次数里,对的回归都会产生一个统计上显著的t统计量。这种现象就是伪回归,即Yt与Xt之间根本没有关系,但用了t统计量的OLS回归往往表示它们之间存在某种关系。为了避免这种伪回归,可通过引入趋势变量t消除这种趋势性影响。但这种方法仅适用于趋势变量是确定性的,不适用于趋势变量为随机性的。要判断一个时序的趋势是确定性的还是随机性的,可通过ADF检验的模型(3)来完成。如检验表明给定时间序列有单位根,则该时序列具有随机性趋势。如果它没有单位根,则表明该序列具有确定性趋势。对