2017年上海市青浦区高考数学一模试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)已知复数z=2+i(i为虚数单位),则.2.(4分)已知集合,则A∩B=.3.(4分)在二项式(x+)6的展开式中,常数项是.4.(4分)等轴双曲线C:x2﹣y2=a2与抛物线y2=16x的准线交于A、B两点,|AB|=4,则双曲线C的实轴长等于.5.(4分)如果由矩阵=表示x,y的二元一次方程组无解,则实数a=.6.(4分)执行如图所示的程序框图,若输入n=1的,则输出S=.7.(5分)若圆锥的侧面积为20π,且母线与底面所成的角为,则该圆锥的体积为.8.(5分)设数列{an}的通项公式为an=n2+bn,若数列{an}是单调递增数列,则实数b的取值范围为.9.(5分)将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为.(精确到0.01)10.(5分)已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|+|=|﹣|,则•=.11.(5分)若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是.12.(5分)已知数列{an}满足:对任意的n∈N*均有an+1=kan+3k﹣3,其中k为不等于0与1的常数,若ai∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,则满足条件的a1所有可能值的和为.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)已知f(x)=sinx,A={1,2,3,4,5,6,7,8}现从集合A中任取两个不同元素s、t,则使得f(s)•f(t)=0的可能情况为()A.12种B.13种C.14种D.15种14.(5分)已知空间两条直线m,n两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊊α,n⊊β⇒n⊥α;③m∥n;m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β.其中正确的序号是()A.①④B.②③C.①②④D.①③④15.(5分)如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是()A.B.C.D.16.(5分)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=log2x};③M={(x,y)|y=2x﹣2};④M={(x,y)|y=sinx+1}.其中是“垂直对点集”的序号是()A.①②③B.①②④C.①③④D.②③④三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.18.(14分)已知函数f(x)=sin2x+cos2(﹣x)﹣(x∈R).(1)求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,若A<B,且f(A)=f(B)=,求的值.19.(14分)如图,F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,且焦距为2,动弦AB平行于x轴,且|F1A|+|F1B|=4.(1)求椭圆C的方程;(2)若点P是椭圆C上异于点、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.20.(16分)如图,已知曲线及曲线,C1上的点P1的横坐标为.从C1上的点作直线平行于x轴,交曲线C2于Qn点,再从C2上的点作直线平行于y轴,交曲线C1于Pn+1点,点Pn(n=1,2,3…)的横坐标构成数列{an}.(1)求曲线C1和曲线C2的交点坐标;(2)试求an+1与an之间的关系;(3)证明:.21.(18分)已知函数f(x)=x2﹣2ax(a>0).(1)当a=2时,解关于x的不等式﹣3<f(x)<5;(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.2017年上海市青浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)已知复数z=2+i(i为虚数单位),则=3﹣4i.【考点】A5:复数的运算.菁优网版权所有【专题】11:计算题;35:转化思想;4A:数学模型法;5N:数系的扩充和复数.【分析】把复数z代入z2,然后展开,再求出得答案.【解答】解:由z=2+i,得z2=(2+i)2=3+4i,则=3﹣4i.故答案为:3﹣4i.【点评】本题考查了复数代数形式的乘除运算,考查了共轭复数的求法,是基础题.2.(4分)已知集合,则A∩B=[﹣1,3).【考点】1E:交集及其运算.菁优网版权所有【专题】11:计算题.【分析】利用指数函数的性质求出集合A中不等式的解集,确定出集合A,求出集合B中函数的定义域,确定出B,找出两集合的公共部分,即可求出两集合的交集.【解答】解:集合A中的不等式变形得:2﹣1≤2x<24,解得:﹣1≤x<4,∴A=[﹣1,4);由集合B中函数得:9﹣x2>0,即x2<9,解得:﹣3<x<3,∴B=(﹣3,3),则A∩B=[﹣1,3).故答案为:[﹣1,3)【点评】此题属于以其他不等式的解法及函数的定义域为平台,考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(4分)在二项式(x+)6的展开式中,常数项是4320.【考点】DA:二项式定理.菁优网版权所有【专题】35:转化思想;49:综合法;5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于零,求得r的值,可得展开式的常数项.【解答】解:二项式(x+)6的展开式的通项公式为Tr+1=•6r•x6﹣2r,令6﹣2r=0,求得r=3,可得常数项为=4320,故答案为:4320.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.4.(4分)等轴双曲线C:x2﹣y2=a2与抛物线y2=16x的准线交于A、B两点,|AB|=4,则双曲线C的实轴长等于4.【考点】KC:双曲线的性质.菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程.【分析】抛物线y2=16x的准线为x=﹣4.与双曲线的方程联立解得.可得4=|AB|=,解出a即可得出.【解答】解:抛物线y2=16x的准线为x=﹣4.联立,解得.∴4=|AB|=,解得a2=4.∴a=2.∴双曲线C的实轴长等于4.故答案为:4.【点评】本题考查了抛物线与双曲线的标准方程及其性质,属于基础题.5.(4分)如果由矩阵=表示x,y的二元一次方程组无解,则实数a=﹣2.【考点】OC:几种特殊的矩阵变换.菁优网版权所有【专题】17:选作题;35:转化思想;4G:演绎法;5R:矩阵和变换.【分析】由矩阵=表示x,y的二元一次方程组无解,得到,即可求出a.【解答】解:∵由矩阵=表示x,y的二元一次方程组无解,∴,∴a=﹣2.故答案为﹣2.【点评】本题考查二元一次方程组无解问题,考查学生的计算能力,正确转化是关键.6.(4分)执行如图所示的程序框图,若输入n=1的,则输出S=log319.【考点】EF:程序框图.菁优网版权所有【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.【分析】模拟程序的运行,当n=19时满足条件n>3,退出循环,可得:S=log319,即可得解.【解答】解:模拟程序的运行,可得n=1不满足条件n>3,执行循环体,n=3,不满足条件n>3,执行循环体,n=19,满足条件n>3,退出循环,可得:S=log319.故答案为:log319.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理,属于基础题.7.(5分)若圆锥的侧面积为20π,且母线与底面所成的角为,则该圆锥的体积为16π.【考点】L5:旋转体(圆柱、圆锥、圆台).菁优网版权所有【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解答】解:∵设圆锥的母线长是l,底面半径为r,母线与底面所成的角为,可得①∵侧面积是20π,∴πrl=20π,②由①②解得:r=4,l=5,故圆锥的高h===3则该圆锥的体积为:×πr2×3=16π故答案为:16π.【点评】本题考查了圆锥的有关计算,解题的关键是正确的进行圆锥与扇形的转化.8.(5分)设数列{an}的通项公式为an=n2+bn,若数列{an}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.菁优网版权所有【专题】35:转化思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】数列{an}是单调递增数列,可得∀n∈N*,an+1>an,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{an}是单调递增数列,∴∀n∈N*,an+1>an,(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.9.(5分)将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为3.62.(精确到0.01)【考点】LD:斜二测法画直观图.菁优网版权所有【专题】15:综合题;34:方程思想;4G:演绎法;5F:空间位置关系与距离.【分析】由题意,正三角形ABC的高为5,利用余弦定理求出△A′B′C′中最短边的边长.【解答】解:由题意,正三角形ABC的高为5,∴△A′B′C′中最短边的边长为≈3.62.故答案为3.62.【点评】本题考查“斜二测”画法,考查余弦定理,考查学生的计算能力,属于中档题.10.(5分)已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|+|=|﹣|,则•=4.【考点】9S:数量积表示两个向量的夹角.菁优网版权所有【专题】35:转化思想;41:向量法;5A:平面向量及应用.【分析】由|+|=|﹣|⇒(+)2=(﹣)2⇒•=0,∴AO⊥BO,∴△AOB是边长为2的等腰直角三角形,即可求•=||||cos45°.【解答】解:由|+|=|﹣|⇒(+)2=(﹣)2⇒•=0,∴AO⊥BO,∴△A