一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣3的绝对值是()A.3B.﹣3C.13D.132.计算(﹣xy3)2的结果是()[来源:学_科_网]A.x2y6B.﹣x2y6C.x2y9D.﹣x2y93.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()5.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件6.若12xy是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5B.﹣1C.2D.77.直线y=2x+2沿y轴向下平移6个单位后与y轴的交点坐标是()A.(0,2)B.(0,8)C.(0,4)D.(0,﹣4)8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()cm[来源:学科网ZXXK]A.53B.25C.485D.2459.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.133B.92C.4133D.2510.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是()A.AQ=52PQB.AQ=3PQC.AQ=83PQD.AQ=4PQ二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.函数2yx中,自变量x的取值范围是.12.分解因式:ab3﹣4ab=.13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为.14.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)15.已知反比例函数的图象经过点(m,4)和点(8,﹣2),则m的值为.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.17.如图,C、D是线段AB上两点,且AC=BD=16AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点.在点P从点C移动到点D时,点M运动的路径长度为.18.如图坐标系中,O(0,0),A(6,63),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE=245,则CE:DE的值是.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)[来源:学+科+网]19.(1)计算:1622(3);(2)化简:2111aaa.20.(1)解方程:36122xxx;(2)解不等式组:121312xxx.21.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.22.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.23.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.[来源:Z*xx*k.Com](1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)65.26.5B产品单价(元/件)3.543并求得了A产品三次单价的平均数和方差:Ax=5.9,sA2=13[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=43150(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了[来源:学§科§网]%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?26.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“BExCE=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).27.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.28.如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止.直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S与t的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.