时间复杂度:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数,T(n)称为这一算法的“时间复杂度”。渐近时间复杂度:当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂度”。当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。1、设三个函数f,g,h分别为f(n)=100n^3+n^2+1000,g(n)=25n^3+5000n^2,h(n)=n^1.5+5000nlgn请判断下列关系是否成立:(1)f(n)=O(g(n))(2)g(n)=O(f(n))(3)h(n)=O(n^1.5)(4)h(n)=O(nlgn)这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的O是数学符号,它的严格定义是若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0,使得当n≥n0时都满足0≤T(n)≤C?f(n)。用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。◆(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。◆(2)成立。与上同理。◆(3)成立。与上同理。◆(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。2、设n为正整数,利用大O记号,将下列程序段的执行时间表示为n的函数。(1)i=1;k=0while(in){k=k+10*i;i++;}解答:T(n)=n-1,T(n)=O(n),这个函数是按线性阶递增的。(2)x=n;//n1while(x=(y+1)*(y+1))y++;解答:T(n)=n1/2,T(n)=O(n1/2),最坏的情况是y=0,那么循环的次数是n1/2次,这是一个按平方根阶递增的函数。(3)x=91;y=100;while(y0)if(x100){x=x-10;y--;}elsex++;解答:T(n)=O(1),这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有?没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数。O(1)Temp=i;i=j;j=temp;以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。O(n^2)2.1.交换i和j的内容sum=0;(一次)for(i=1;i=n;i++)(n次)for(j=1;j=n;j++)(n^2次)sum++;(n^2次)解:T(n)=2n^2+n+1=O(n^2)2.2.for(i=1;in;i++){y=y+1;①for(j=0;j=(2*n);j++)x++;②}解:语句1的频度是n-1语句2的频度是(n-1)*(2n+1)=2n^2-n-1f(n)=2n^2-n-1+(n-1)=2n^2-2该程序的时间复杂度T(n)=O(n^2).O(n)2.3.a=0;b=1;①for(i=2;i=n;i++)②{s=a+b;③b=a;④a=s;⑤}解:语句1的频度:2,语句2的频度:n,语句3的频度:n-1,语句4的频度:n-1,语句5的频度:n-1,T(n)=2+n+3(n-1)=4n-1=O(n).O(log2n)2.4.i=1;①while(i=n)i=i*2;②解:语句1的频度是1,设语句2的频度是f(n),则:2^f(n)=n;f(n)=log2n取最大值f(n)=log2n,T(n)=O(log2n)O(n^3)2.5.for(i=0;in;i++){for(j=0;ji;j++){for(k=0;kj;k++)x=x+2;}}解:当i=m,j=k的时候,内层循环的次数为k当i=m时,j可以取0,1,...,m-1,所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n,则循环共进行了:0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最坏情况运行时间是O(n^2),但期望时间是O(nlogn)。通过每次都仔细地选择基准值,我们有可能把平方情况(即O(n^2)情况)的概率减小到几乎等于0。在实际中,精心实现的快速排序一般都能以(O(nlogn)时间运行。下面是一些常用的记法:访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如果能在每个步骤去掉一半数据元素,如二分检索,通常它就取O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对元素相乘并加到一起,所有元素的个数是n^2。指数时间算法通常来源于需要求出所有可能结果。例如,n个元素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题(如著名的“巡回售货员问题”),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。一个经验规则有如下复杂度关系clog2Nnn*Log2Nn^2n^32^n3^nn!其中c是一个常量,如果一个算法的复杂度为c、log2N、n、n*log2N,那么这个算法时间效率比较高,如果是2^n,3^n,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。