几何面积问题除了利用常规的五大模型、各种公式求得之外,还可以用图形分割的思想来做。我们发现,在迎春杯几何问题中,这类题目很多。掌握好这种思想方法,可以帮助我们解决很多几何难题。解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。解题思想:这其实就是一种化整为零的思想,各位同学不仅要学会几何题中的这种方法,更要细细体味这种思想在解决各种问题中的妙用。模块一、简单分割【例1】3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A和B分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是__________平方厘米.【例2】正方形ABCD的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCBA【例3】将边长为a的正方形各边的中点连结成第二个正方形,再将第二个正方形各边的中点连结成第三个正方形,依此规律,继续下去,得到下图那么,边长为a的正方形面积是图中阴影部分面积的________倍.【例4】正三角形ABC的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.例题精讲知识点拨4-2-4.图形的分割CBA【例5】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.FEDCBAFABCDE【例6】长方形ABCD的面积是40平方厘米,E、F、G、H分别为AC、AH、DH、BC的中点。三角形EFG的面积是平方厘米。HGFEDCBA【例7】把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.图1图2【例8】右图中的大正方形ABCD的面积是1,其它点都是它所在的边的中点。请问:阴影三角形的面积是多少?ABCD【例9】下图中有四条弦,每一条弦都把大圆分割成两个面积比为1:3的区域,而且这些弦的交点恰好是一个正方形的四个顶点。这些弦把圆分割成9个区域,则此正方形的面积是区域P面积的倍。(3.14)P模块二、化整为零【例10】在图中,三角形ABC和DEF是两个完全相同的等腰直角三角形,其中DF长9厘米,CF长3厘米,那么阴影部分的面积是多少平方厘米?FEDCBA【例11】正方形ABCD与等腰直角三角形BEF放在一起(如图),M、N点为正方形的边的中点,阴影部分的面积是14cm2,三角形BEF的面积是____cm2。NMFEDCBA【例12】一个等腰直角三角形和一个正方形如图摆放,①、②、③这三块的面积分别是2、8、58,则④、⑤这两块的面积差是.⑤④③②①⑤④③②①【例13】如图4,在长方形ABCD中,E、F、G分别是BC、CD、DA上的点,且使得四边形AEFG是直角梯形,45GAE,23∶∶GFAE.如果梯形AEFG的面积是15平方厘米,那么长方形ABCD的面积是平方厘米.EFGDCBA【例14】一个长方形和一个等腰直角三角形如图放置,图中六块的面积分别为1,1,l,l,2,3.大长方形的面积是.111123【例15】如右图,一个面积为2009平方厘米的长方形,被分割成了一个长方形、两个等腰直角三角形、三个梯形.已知除了阴影长方形外,其它的五块面积都相等,且B是AC的中点;那么阴影长方形的面积是平方厘米.ACB【例16】如图中正六边形的面积为24,其中A、B、C都是所在边的中点,D是BC的三等分点,阴影部分的面积是________。DABC【例17】正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.B1B6B5B4B3B2A2A6A5A4A3A1【例18】如右图,长方形ABCD中被嵌入了6个相同的正方形.已知AB=22厘米,BC=20厘米,那么每一个正方形的面积为平方厘米.DCBA