1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;教学目标知识要点7-2-2较复杂的乘法原理3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.模块一、乘法原理之组数问题【例1】⑴由数字1、2可以组成多少个两位数?⑵由数字1、2可以组成多少个没有重复数字的两位数?【考点】复杂乘法原理【难度】1星【题型】解答【解析】⑴组成两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,有2种方法.根据乘法原理,由数字1、2可以组成2×2=4个两位数,即11,12,21,22.⑵组成没有重复数字的两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,因为要组成没有重复数字的两位数,因此十位上用的数字个位上不能再用,因此第二步只有1种方法,由乘法原理,能组成2×1=2个两位数,即12,21.【答案】⑴4⑵2【巩固】⑴由3、6、9这3个数字可以组成多少个没有重复数字的三位数?⑵由3、6、9这3个数字可以组成多少个三位数?【考点】复杂乘法原理【难度】2星【题型】解答【解析】⑴分三步完成:第一步排百位上的数,有3种方法;第二步排十位上的数,有2种方法;第三步,排个位上的数,有1种方法,由乘法原理,3、6、9这3个数字可以组成3216个没有重复数字的三位数.⑵分三步完成,即分别排百位、十位、个位上的数字,每步有3种方法,由乘法原理,由3、6、9这3个数字一共可以组成33327个三位数.【答案】⑴6⑵27【例2】用数字0,1,2,3,4可以组成多少个:⑴三位数?⑵没有重复数字的三位数?【考点】复杂乘法原理【难度】2星【题型】解答【解析】⑴组成三位数可分三步完成.第一步,确定百位上的数字,因为百位不能为0,所以只有4种选择.第二步确定十位,所有数字都可以,有5种选择;第三步确定个位,也是5种选择。共有455100种选择。⑵也分三步完成.第一步,百位上有4种选择;第二步确定十位,除了百位上已使用的数字不能用,其他四个数字都可以,所以有4种方法;第三步确定个位,除了百位和十位上已使用过的数字,还有3种选择.根据乘法原理,可以组成44348个没有重复数字的三位数.【答案】⑴100⑵48【巩固】由四张数字卡片:0,2,4,6可以组成_____个不同的三位数。【考点】复杂乘法原理【难度】2星【题型】填空【关键词】希望杯,4年级,1试【解析】千位选法有3种,百位3种,十位2种,个位1种,乘法原理3×3×2×1=18个【答案】18个【巩固】用五张数字卡片:0,2,4,6,8能组成______个不同的三位数。【考点】复杂乘法原理【难度】2星【题型】填空【关键词】希望杯,五年级,一试,第8题【解析】4×4×3=48个例题精讲【答案】48个【例3】有五张卡,分别写有数字1、2、4、5、8.现从中取出3张卡片,并排放在一起,组成一个三位数,问:可以组成多少个不同的偶数?【考点】复杂乘法原理【难度】3星【题型】解答【解析】分三步取出卡片.首先因为组成的三位数是偶数,个位数字只能是偶数,所以先选取最右边的也就是个位数位置上的卡片,有2、4、8三种不同的选择;第二步在其余的4张卡片中任取一张,放在最左边的位置上,也就是百位数的位置上,有4种不同的选法;最后从剩下的3张卡片中选取一张,放在中间十位数的位置上,有3种不同的选择.根据乘法原理,可以组成3×4×3=36个不同的三位偶数.【答案】36【例4】有5张卡,分别写有数字2,3,4,5,6.如果允许6可以作9用,那么从中任意取出3张卡片,并排放在一起.问:⑴可以组成多少个不同的三位数?⑵可以组成多少个不同的三位偶数?【考点】复杂乘法原理【难度】3星【题型】解答【解析】⑴先考虑6只能当6的情况最后总的个数只要在这个基础上乘以2就可以了,分三步取出卡片:第一步确定百位,有5种选择;第二步确定十位,除了百位上已使用的数字不能用,其他4个数字都可以,所以有4种方法;第三步确定个位,除了百位和十位上已使用过的数字,还有3种选择.根据乘法原理,考虑6可以当作9,可以组成5432120(个)不同的三位数.⑵先考虑6只能当6的情况,分三步取出卡片.首先因为组成的三位数是偶数,个位数字只能是偶数,所以先选取最右边的也就是个位数位置上的卡片,有2、4、6三种不同的选择;第二步在其余的4张卡片中任取一张,放在十位数的位置上,有4种不同的选法;最后从剩下的3张卡片中选取一张,放在百位数的位置上,有3种不同的选择.根据乘法原理,6只是6时,可以组成34336(个)不同的三位偶数.这时候算所求的三位偶数并不是简单乘以2就可以的,因为如果个位是6的话变成9就不再是偶数,多乘的还需要减去,个位是6一共有4312(个)不同的三位偶数,所以,可以组成3621260(个)不同的三位偶数.【答案】⑴120⑵60【例5】用1、2、3这三个数字可以组成多少个不同的三位数?如果按从小到大的顺序排列,213是第几个数?【考点】复杂乘法原理【难度】3星【题型】解答【解析】排百位、十位、个位依次有3种、2种、1种方法,故一共有3×2×1=6(种)方法,即可以组成6个不同三位数.它们依次为123,132,213,231,312,321.故213是第3个数.【答案】6个;第3个【巩固】有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字和等于12.将所有这样的四位数从小到大依次排列,第35个为.【考点】复杂乘法原理【难度】3星【题型】解答【解析】4个互不相同且不为0的数字之和等于12,只有两种可能:1+2+3+6或者1+2+4+5.根据乘法原理,每种情况可组成4×3×2×1=24个不同的四位数,一共可组成48个不同的四位数.要求从小到大排列的第35个数,即求从大到小排列的第14个数.我们从千位最大的数开始往下数:千位最大可以取6,而千位是6的数共有3×2=6个;接下来是5,千位为5的数也有6个.所以第13个数应为4521,第14个是4512,答案为4512.【答案】4512【例6】对于由1~5组成的无重复数字的五位数,如果它的首位数字不是1,那么可以进行如下的一次置换操作:记首位数字为k,则将数字k与第k位上的数字对换.例如,24513可以进行两次置换:24513→42513→12543.可以进行4次置换的五位数有个.【考点】【难度】星【题型】填空【关键词】迎春杯,六年级,初赛,12题【【解解析析】】要进行4次置换,设首位为a(a不为1,有4种选择),那么第1次与a置换的第a位上的数可能为1和a,有3种选择;设与a置换的为b,现在b在首位,此时要与b置换的第6位上的数可能为1,a,b,有2种选择;设与b置换的为c,则此时c在首位,那么此时与c置换的数组成为1,a,b,c,只有1种选择;设为d,那么最后只能是d与1置换.所以要进行4次置换共有432124种方法,那么共有24个数可以进行四次置换.另解:也可以反过来考虑,进行4次置换后,2,3,4,5四个数分别在第2,3,4,5位上,那么1只能在首位上,故经过4次置换后得到的数必定是12345.1与2,3,4,5中的某个数置换一次有4种选择,这个数与其它的3个数置换有3种选择……也可以得到符合条件的数有432124个.【答案】24个【例7】将1332,332,32,2这四个数的10个数码一个一个的划掉,要求先划位数最多的数的最小数码,共有多少种不同的划法?【考点】复杂乘法原理【难度】4星【题型】解答【解析】从小到大一步一步的分步划,遇到出现岔路的情况分类考虑.从位数最多的1332开始:⑴划掉1332中的1,剩下332,332,32,2四个数;⑵划掉位数最多的332中的2,有2种不同的顺序,划掉后剩下33,33,32,2四个数;⑶划掉32中的2,剩下33,33,3,2;⑷两个33中,各划掉一个3,有4×2=8种划掉的顺序,之后剩下3,3,3,2四个数;⑸划掉2后,剩下3,3,3,有3×2=6种划掉的顺序.根据乘法原理,共有不同的划法:2×8×6=96种.【答案】96种【巩固】一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数,例如:532吃掉311,123吃掉123,但726与267相互都不被吃掉.问:能吃掉678的三位数共有多少个?【考点】复杂乘法原理【难度】3星【题型】解答【解析】即求百位数不小于6,十位数不小于7,个位不小于8的自然数.百位数不小于6,有4种;十位数不小于7,有3种;个位不小于8,有2种.由乘法原理,能吃掉678的三位数共有43224种.【答案】24【例8】如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么,这样的四位数最多能有多少个?【考点】复杂乘法原理【难度】3星【题型】解答【解析】四位数的千位数字是1.由于这个四位数与三位数的相同位数上的数字之和小于19,所以这个四位数与三位数的相同位数上的数字之和均等于9.这两个数的其他数字均不能为8.四位数的百位数字a可在0、2、3、4、5、6、7中选择(不能是9),有7种选择,这时三位数的百位数字是9a;四位数的十位数字b可在剩下的6个数字中选择,三位数的十位数字是9b.四位数的个位数字c可在剩下的4个数字中选择,三位数的个位数字是9c.因此,根据乘法原理,这样的四位数有764=168个.【答案】168【例9】用1~9可以组成______个不含重复数字的三位数;如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满足要求的三位数?【考点】复杂乘法原理【难度】3星【题型】解答【解析】1)9×8×7=504个.2)504-(6+5+5+5