2012年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.下面的数中,与-3的和为0的是()A.3B.-3C.13D.-132.下面的几何体中,主(正)视图为三角形的是()3.计算(-2x2)3的结果是()A.-2x5B.-8x6C.-2x6D.-8x54.下面的多项式中,能因式分解的是()A.m2+nB.m2-m+1C.m2-nD.m2-2m+15.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%.则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元6.化简x2x-1+x1-x的结果是()A.x+1B.x-1C.-xD.x7.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2第7题图第9题图8.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为()A.16B.13C.12D.239.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°.设OP=x,则△PAB的面积y关于x的函数图象大致是()10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.45C.10或45D.10或217第10题图二、填空题(本大题共4小题,每小题5分,满分20分)11.2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是________.12.甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为s2甲=36,s2乙=25.4,s2丙=16.则数据波动最小的一组是________.13.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=________°.第13题图第14题图14.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4.给出如下结论:①S1+S4=S2+S3②S2+S4=S1+S3③若S3=2S1,则S4=2S2④若S1=S2,则P点在矩形的对角线上其中正确结论的序号是________(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:(a+3)(a-1)+a(a-2).16.解方程:x2-2x=2x+1.四、(本大题共2小题,每小题8分,满分16分)17.在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f.(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:第17题图mnm+nf123213432354257347猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是__________________________(不需证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否仍然成立.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.第18题图五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC中,∠A=30°,∠B=45°,AC=23.求AB的长.第19题图20.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.月均用水量x(t)频数(户)频率0<x≤560.125<x≤100.2410<x≤15160.3215<x≤20100.2020<x≤25425<x≤3020.04第20题图请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求月均用水量不超过15t的家庭数占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?六、(本题满分12分)21.甲、乙两家商场进行促销活动.甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…….乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=优惠金额购买商品的总金额),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲、乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买该商品花钱较少?请说明理由.七、(本题满分12分)22.如图①,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等.设BC=a,AC=b,AB=c.第22题图(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图②,若△BDG与△DFG相似,求证:BG⊥CG.八、(本题满分14分)23.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);(2)当h=2.6时,球能否越过球网?球会不会出界,请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.第23题图2012年安徽省中考数学试卷参考答案与试题解析1.A【解析】互为相反数的两数和为0,所以与-3和为0的数是3.2.C【解析】A、B、D的主视图均是长方形.3.B【解析】(-2x2)3=(-2)3·x2×3=-8x6.4.D【解析】A、B、C均不能进行因式分解,只有选项D能利用完全平方公式进行因式分解.5.B【解析】由题意可知,4月份产值为:a(1-10%).5月份产值为:a(1-10%)(1+15%)万元.6.D【解析】原式=x2x-1-xx-1=x(x-1)x-1=x.7.A【解析】内部为正八边形,则每一条边都相等,又四个角上的四个三角形都为等腰直角三角形,且斜边都相等,则四个角上的四个三角形全等,可以把这四个三角形拼起来,则构成一个正方形,它的边长也等于a,则这四个小三角形面积和为a2,则阴影部分的面积为2a2.8.B【解析】打电话共有6种情况:分别为:①甲、乙、丙.②甲、丙、乙.③乙、甲、丙.④乙、丙、甲.⑤丙、甲、乙.⑥丙、乙、甲.其中甲是第一个打的共有两种情况,则第一个打电话给甲的概率为13.9.D【解析】因为OP=x,且OA=2,则AP=2-x,由相切的性质可知,∠PAB=90°,∠APB=60°,利用三角函数可求得:AB=23-3x.则△PAB的面积y=3x22-23x+23.所以函数图象为二次函数,对称轴为x=2.10.C【解析】情况一:如解图①,由题意可得,AC∥DE,又点D是AB的中点,则DE为△ABC的中位线,则CE=BE=4,因为DE=3,则AC=6,BC=8,根据勾股定理可得,AB=10;情况二:如解图②,因为GI∥KJ,又点K是线段HI的中点,则KJ是△HGI的中位线,则HK=KI=4,2KJ=GI=4,HI=8,利用勾股定理可得,GH=45.第10题解图11.3.78×105【解析】要注意10的指数等于原数的整数数位减去1.12.丙【解析】方差表示的是数据波动的大小,方差越小,波动越小.反之,方差越大,波动越大.13.60【解析】因为OA=OC,且四边形OABC是平行四边形,则四边形OABC为菱形,如解图,连接OB,则OA=OB=AB,△OAB为等边三角形,则∠OAB=∠OCB=60°.又∠DAB+∠DCB=180°,∠OAB=∠OCB=60°,则∠OAD+∠OCD=60°.第13题解图14.②④【解析】设此矩形的长为a,宽为b,点P到BC的距离为k,点P到AD的距离为h,则S2+S4=12ak+12ah=12a(k+h)=12ab.同理可证S1+S3=12ab.则S2+S4=S1+S3.所以②成立.若S1=S2,由②可知,则S3=S4,通过反证法可知,P点在矩形的对角线上,所以④也成立.①③显然不成立.15.解:原式=a2+2a-3+a2-2a.......................................(4分)=2a2-3.....................(8分)16.解:方程化为x2-4x-1=0.∵b2-4ac=(-4)2-4×1×(-1)=20,.........................(3分)∴x=4±202=2±5,∴x1=2-5,x2=2+5.(8分)17.(1)解:表中填6;6.....................(1分)关系式为f=m+n-1....................(2分)注:若猜想出的是其他关系式,只要这个关系式对表中每种情况都成立就可酌情给分;(2)解:当m、n不互质时,关系式f=m+n-1不成立.........(4分)例如:当m=2,n=2时,图形如解图所示.第17题解图对角线所穿过的小正方形的个数f=2,而m+n=4,等式f=m+n-1不成立.....(8分)18.(1)解:本题是开放题,答案不唯一;图中给出了两个满足条件的三角形,其他解答只要正确可相应给分..............(3分)(2)解:D点如解图所示............(6分)AD是由AB绕A点逆时针旋转90°而得到的,或AD是由AB绕A点顺时针旋转270°而得到的.....................(8分)第18题解图19.解:如解图,作CD⊥AB于D点.在Rt△ACD中,∠A=30°,AC=23,所以AD=AC·cos30°=23×32=3...............(5分)CD=AC·sin30°=3.在Rt△BCD中,∠B=45°,所以BD=CD=3,∴AB=AD+BD=3+3............................(10分)第19题解图20.解:(1)表中填12;0.08.补全的图形如解图所示...................(4分)第20题解图(2)0.12+0.24+0.32=0.68.即月均用水量不超过15t的家庭数占被调查的家庭总数的68%..........(7分)(3)(0.08+0.04)×1000=120.所以,根据调查数据估计,该小区月均用水量超过20t的家庭大约有120户.....(10分)21.(1)解:510-200=310(元),付款时应付310元............(3分)(2)解:P与x之间的函数关系式为P=200x.当400≤x<600时,P随x的增大而减小;..............................(7分)(3)解:设在甲、乙两家商场购买该商品实付款分别为y1元,y2元,则y1=x-100,y2=0.6x,y1-y2=0.4x-100=0.4(x-250)..............(9分)当200≤x<250时,y1<y2,选择甲商场花钱较少;当x=250时,y1