2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.-2的绝对值是()A.-2B.2C.±2D.122.计算a10÷a2(a≠0)的结果是()A.a5B.a-5C.a8D.a-83.2016年3月份我省农产品实现出口额8362万美元.其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()5.方程2x+1x-1=3的解是()A.-45B.45C.-4D.46.2014年我国省财政收入比2013年增长8.9%,2015年比2014年增长9.5%.若2013和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式是()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x3B3≤x6C6≤x9D9≤x12Ex≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()第8题图第7题图A.4B.42C.6D.439.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米.甲、乙两名长跑爱好者同时从点A出发.甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC.则线段CP长的最小值为()A.32B.2C.81313D.121313第10题图二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x-2≥1的解集是________.12.因式分解:a3-a=________________.13.如图,已知⊙O的半径为2,A为⊙O外一点.过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C.若∠BAC=30°,则劣弧BC︵的长为______.第13题图第14题图14.如图,在矩形纸片ABCD中,AB=6,BC=10.点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处.有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.其中正确的是______________.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,共16分)15.计算:(-2016)0+3-8+tan45°.16.解方程:x2-2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.第17题图18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n-1)+(________________)+(2n-1)+…+5+3+1=____________.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点.某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.第19题图20.如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC.求此时点M的坐标.第20题图六、(本题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2x6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.第22题图八、(本题满分14分)23.如图1,A,B分别在射线OM,ON上,且∠MON为钝角.现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和ABPQ的值.2016年安徽省中考数学试卷参考答案与试题解析1.B【解析】依据负数的绝对值是它的相反数求解.∵-2是负数,∴-2的相反数是2,∴-2的绝对值是2.2.C【解析】根据同底数幂的除法运算法则:“底数不变,指数相减”计算即可.a10÷a2=a10-2=a8.3.A【解析】∵1万=104,8362=8.362×103,∴8362万=8.362×103×104=8.362×107.4.C【解析】该圆柱从正面看是一个宽与圆柱的底面直径相等,长与圆柱高相等的矩形.(注:该圆柱的主视图不包括水平桌面部分的主视图)5.D【解析】将方程2x+1x-1=3去分母,得2x+1=3(x-1),去括号,得2x+1=3x-3,移项、合并同类项,得-x=-4.解得x=4.经检验x=4是原分式方程的根.6.C【解析】∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,又∵2015年我省财政收入为b亿元,2015年比2014年增长9.5%,∴b=a(1+8.9%)(1+9.5%).7.D【解析】∵由扇形统计图可知,除B组以外,其余四组在所有参与调查的用户中所占的比例为10%+5%+30%+35%=80%,且参与调查的用户共有64户,∴所有参与调查的总用户数为64÷80%=80(户).∵A、B两组用户所占的比例为10%+(1-80%)=30%,∴所有参与调查的用户中月用水量在6吨以下的共有80×30%=24(户).8.B【解析】∵∠B=∠DAC,∠C=∠C,∴△ABC∽△DAC.∴BCAC=ACDC,即AC2=BC·DC.∵AD是中线,BC=8,∴DC=12BC=4.∴AC2=8×4,∴AC=42.9.A【解析】由题意可知:甲所跑路程分为3个时段:开始1小时,以15千米/时的速度匀速由点A跑至点B,所跑路程为15千米;第1小时至第32小时休息,所跑路程不变;第32小时至第2小时,以10千米/时的速度匀速跑至终点C,所跑路程为5千米,即甲累计所跑路程为20千米时,所用时间为2小时,并且甲开始1小时内的速度大于第32小时至第2小时之间的速度.因此选项A、C符合甲的情况.乙从点A出发,以12千米/时的速度匀速一直跑至终点C,所跑路程为20千米,所用时间为53小时,并且乙的速度小于甲开始的速度但大于甲第3时段的速度.所以选项A、B符合乙的情况.故选A.10.B【解析】如解图,∵∠PAB=∠PBC,∠ABC=90°,∴∠BAP+∠PBA=90°,∴∠APB=90°,∴点P始终在以AB的中点O为圆心,以OA=OB=OP=12AB=3为半径的圆上,由解图知,只有当在点P在OC与⊙O的交点处时,PC的长最小.在Rt△OBC中,OC=OB2+BC2=32+42=5,∴P′C=OC-OP′=5-3=2,∴线段CP长的最小值为2.第10题解图11.x≥3【解析】移项,得x≥1+2,合并同类项,得x≥3.12.a(a+1)(a-1)【解析】a3-a提取公因式a得,a(a2-1),利用平方差公式分解因式得,原式=a(a+1)(a-1).13.43π【解析】如解图,连接OB.∵AB为⊙O的切线,B为切点,∴∠B=90°,又∵∠A=30°,∴∠AOB=60°,∴∠BOC=120°,∴劣弧BC︵的长=120×π×2180=43π.第13题解图14.①③④【解析】由折叠的性质得,∠CBE=∠FBE,∠ABG=∠FBG,∴∠EBG=∠FBE+∠FBG=12×90°=45°,故①正确;由折叠的性质得,BF=BC=10,BA=BH=6,∴HF=BF-BH=4,AF=BF2-BA2∴AF=8,设GH=x,则GF=8-x,在Rt△GHF中,x2+42=(8-x)2,∴x=3,∴GF=5,∴AG=3,同理在Rt△FDE中,由FD2=EF2-ED2得ED=83,EF=103,∴EDFD=43≠ABAG=2,∴△DEF与△ABG不相似,故②不正确;S△ABG=12×3×6=9,S△FGH=12×3×4=6,S△ABGS△FGH=96=32,故③正确;∵AG=3,DF=AD-AF=2,FG=5,∴AG+DF=FG=5,故④正确.15.解:原式=1+(-2)+1=0..........................(8分)16.解:两边都加上1,得x2-2x+1=4+1,即(x-1)2=5,(4分)开平方,得x-1=±5,∴原方程的解是x1=1+5,x2=1-5..............(8分)17.解:(1)所求点D及四边形ABCD的另两条边AD、CD如解图所示;........(4分)(2)所求四边形A′B′C′D′如解图所示..................(8分)第17题解图18.解:(1)42;n2;(每空2分)【解法提示】观察每一行图形变换,可以发现,当小球有4行时,小球的总个数=4×4=42(个),∴第一个空填42;根据此规律可知,当小球有n行时,小球的总数=n·n=n2,∴第二个空填n2.(2)2n+1;2n2+2n+1.(每空2分)【解法提示】在连续的奇数中,2n-1后边的数是2n+1,∴第一个空填“2n+1”;由第(1)小题的结论可知,在等式的左边的数中,“2n-1”前面的所有数之和等于n2,后面的所有的数之和也等于n2,∴总和=n2+(2n+1)+n2=2n2+2n+1,∴等式的右边填“2n2+2n+1”.19.解:∵∠DEB=60°,∠DAB=30°,∴∠ADE=60°-30°=30°,∴∠DAB=∠ADE,∴DE=AE=20,........(3分)如解图,过点D作DF⊥AB于点F,则∠EDF=30°,∴在Rt△DEF中,EF=12DE=10,.........(6分)∴AF=20+10=30,∵DF⊥AB,∠CAB=90°,∴CA∥DF,又∵l1∥l2,∴四边形CAFD是矩形,∴CD=AF=30,答:C、D两点间的距离为30米.................(10分)第19题解图20.解:(1)∵点A(4,3),∴OA=42+32