2018年江苏省徐州市中考数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018年江苏省徐州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)4的相反数是()A.B.﹣C.4D.﹣42.(3分)下列计算正确的是()A.2a2﹣a2=1B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a63.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.(3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定6.(3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.(3分)如图,在平面直角坐标系中,函数y=kx与y=﹣的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为()A.2B.4C.6D.88.(3分)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)五边形的内角和是°.10.(3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为m.11.(3分)化简:||=.12.(3分)若在实数范围内有意义,则x的取值范围为.13.(3分)若2m+n=4,则代数式6﹣2m﹣n的值为.14.(3分)若菱形两条对角线的长分别是6cm和8cm,则其面积为cm2.15.(3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=°.16.(3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.17.(3分)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个.(用含n的代数式表示)18.(3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)﹣12+20180﹣()﹣1+;(2)+.20.(10分)(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:21.(7分)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(7分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m本学生人数A0≤m≤2520B26≤m≤100aC101≤m≤20050Dm≥20166根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应扇形的圆心角为°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.26.(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.2018年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)4的相反数是()A.B.﹣C.4D.﹣4【考点】14:相反数.菁优网版权所有【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:4的相反数是﹣4,故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)下列计算正确的是()A.2a2﹣a2=1B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6【考点】35:合并同类项;47:幂的乘方与积的乘方.菁优网版权所有【专题】1:常规题型.【分析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法则判断D.【解答】解:A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确.故选:D.【点评】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握运算性质和法则是解题的关键.3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.菁优网版权所有【专题】1:常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.菁优网版权所有【专题】1:常规题型.【分析】根据三视图的定义即可判断.【解答】解:根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选:A.【点评】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.5.(3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定【考点】X3:概率的意义.菁优网版权所有【专题】1:常规题型;543:概率及其应用.【分析】利用概率的意义直接得出答案.【解答】解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:,故选:B.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.6.(3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册【考点】W2:加权平均数;W4:中位数;W5:众数;W6:极差.菁优网版权所有【专题】54:统计与概率.【分析】根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【解答】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3﹣0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.【点评】本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.7.(3分)如图,在平面直角坐标系中,函数y=kx与y=﹣的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为()A.2B.4C.6D.8【考点】G8:反比例函数与一次函数的交点问题.菁优网版权所有【专题】33:函数思想.【分析】根据正比例函数y=kx与反比例函数y=﹣的图象关于原点对称,可得出A、B两点坐标的关系,根据垂直于y轴的直线上任意两点纵坐标相同,可得出A、C两点坐标的关系,设A点坐标为(x,﹣),表示出B、C两点的坐标,再根据三角形的面积公式即可解答.【解答】解:∵正比例函数y=kx与反比例函数y=﹣的图象关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),∴S△ABC=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.故选:C.【点评】本题考查了反比例函数与正比例函数图象的特点,垂直于y轴的直线上任意两点的坐标特点,三角形的面积,解答此题的关键是找出A、B两点与A、C两点坐标的关系.8.(3分)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6【考点】F3:一次函数的图象;FD:一次函数与一元一次不等式.菁优网版权所有【专题】11:计算题;533:一次函数及其应用.【分析】由一次函数图象过(3,0)且过第二、四象限知b=﹣3k、k<0,代入不等式求解可得.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.【点评】本题主要考查一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元一次不等式的能力.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)五边形的内角和是540°.【考点】L3:多边形内角与外角.菁优网版权所有【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.10.(3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为1×10﹣8m.【考点】1J:科学记数法—表示较小的数.菁优网版权所有【专题】511:实数.【分析】绝对值小于1的正数也

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功