第11讲一次函数及其应用1.一次函数的概念一般地,形如y=kx+b(k≠0)的函数叫做一次函数,当b=0时,y=kx+b即为y=kx叫做正比例函数,所以说正比例函数是一种特殊的一次函数.2.一次函数的图象与性质(1)一次函数y=kx+b(k≠0)的图象是一条直线,它与x轴的交点坐标为(-bk,0),与y轴的交点坐标为原点,正比例函数y=kx(k≠0)的图象是过(0,b)的一条直线.(2)一次函数y=kx+b(k≠0)的图象所经过的象限及增减性.k、b的符号函数图象图象的位置增减性k>0b>0图象过第一、二、三象限y随x的增大而增大b=0图象过第一、三象限y随x的增大而增大b<0图象过第一、三、四象限y随x的增大而增大k<0函数图象图象的位置增减性b>0图象过第一、二、四象限y随x的增大而减小b=0图象过第二、四象限y随x的增大而减小b<0图象过第二、三、四象限y随x的增大而减小3.待定系数法求一次函数解析式的一般步骤(1)设:设出一次函数解析式一般形式y=kx+b(k≠0);(2)代:将已知条件中函数图象上的两点坐标代入y=kx+b得到方程(组);(3)求:解方程(组)求出k,b的值;(4)写:写出一次函数的解析式.4.一次函数与方程(组)的关系(1)一次函数的解析式y=kx+b就是一个二元一次方程;(2)一次函数y=kx+b的图象与x轴交点的__横坐标__就是方程kx+b=0的解;(3)一次函数y=k1x+b1与y=k2x+b2的图象交点的横、纵坐标值就是方程组y=k1x+b1y=k2x+b2的解.5.一次函数与不等式的关系(1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b>0的解集,即函数图象位于x轴的上方部分对应点的横坐标的取值范围;(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式kx+b0的解集,即函数图象位于x轴的下方部分对应点的横坐标的取值范围.6.一次函数的实际应用(1)常见类型:①费用问题;②销售问题;③行程问题;④容量问题;⑤方案问题.(2)解一次函数实际问题的一般步骤:①设出实际问题中的变量;②建立一次函数关系式;③利用待定系数法求出一次函数关系式;④确定自变量取值范围;⑤利用一次函数的性质求相应的值,对所得到的解进行检验,是否符合实际意义;⑥答.考点1:一次函数的图象与性质【例题1】(2018•江苏扬州•3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=∵m2(舍去),故答案为:2135.考点2:一次函数与方程、不等式的关系【例题2】.(2018·河北T24·10分)如图,直角坐标系xOy中,一次函数y=-12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC-S△BOC的值;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.【解析】:(1)把C(m,4)代入一次函数y=-12x+5,可得4=-12m+5,解得m=2,∴C(2,4).设l2的解析式为y=ax,则4=2a,解得a=2.∴l2的解析式为y=2x.(2)过点C作CD⊥AO于点D,CE⊥BO于点E,则CD=4,CE=2,∵y=-12x+5的图象与x轴、y轴交于A,B两点,令x=0,则y=5,令y=0,则x=10,∴A(10,0),B(0,5).∴AO=10,BO=5.∴S△AOC-S△BOC=12×10×4-12×5×2=15.(3)k的值为32或2或-12.考点3:一次函数的实际应用【例题3】(2019•四川省广安市•8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【解答】解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,35502331xyxy,解得,57xy,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.归纳:1.对于一次函数方案设计题,关键是读懂题意,然后在列方案时找出其中的数量关系并列出不等式;通过解不等式求出未知数的取值范围,然后取其整数解,将每一组符合题意的整数解定为一种方案,在选择最优方案时,通过将每一组解代入相应的关系式中,满足题意的最优解即可定为最优方案.2.在遇到求解一次函数最值问题时,切入问题的关键点在于确定自变量的取值范围,通过给定自变量的范围,选取合适的数值代入解析式求解即可.同时,一次函数确定最值时还应注意以下两点:①当在确定一次函数自变量时,有时需要列不等式解题,对于某些关键字要特别注意,如“不超过”、“不多于”、“最多”等字眼需要使用“≤”;而“至少”、“不少于”等字眼要使用“≥”;②从方程中得到的解一定要进行检验,即要符合原方程和实际意义,切不可忽略.3.涉及图象问题的实际应用要注意:在观察函数图象时,首先要弄清横轴与纵轴所表示的函数变量,然后在分析函数图象时应注意拐点、交点的实际意义,最后在分析图象时要考虑到函数自变量的取值范围.一、选择题:1.(2019•四川省广安市•3分)一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【答案】C【解答】解:∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限,故选:C.2.(2018•湘潭)若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.【答案】C【解答】解:∵一次函数y=x+b中k=﹣1<0,b>0,∴一次函数的图象经过一、二、四象限,故选:C.3.(2019湖北荆门)(3分)如果函数y=kx+b(k,b是常数)的图象不经过第二象限,那么k,b应满足的条件是()A.k≥0且b≤0B.k>0且b≤0C.k≥0且b<0D.k>0且b<0【答案】A【解答】解:∵y=kx+b(k,b是常数)的图象不经过第二象限,当k=0,b<0时成立;当k>0,b≤0时成立;综上所述,k≥0,b≤0;故选:A.4.(2019•山东临沂•3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【答案】D【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.5.(2018•包头)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.2【答案】B【解答】直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),把C(,)代入直线l2:y=kx,可得=k,即k=,故选:B.二、填空题:6.(2019•山东潍坊•3分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是1<k<3.【答案】1<k<3;【解答】解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0,∴k>1,k<3,∴1<k<3;故答案为1<k<3;7.(2018•邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.【答案】x=2.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.8.(2019▪广西河池▪3分)如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣4.【答案】y=2x﹣4.【解答】解:∵A(2,0),B(0,1)∴OA=2,OB=1过点C作CD⊥x轴于点D,则易知△ACD≌△BAO(AAS)∴AD=OB=1,CD=OA=2∴C(3,2)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得0223kbkb∴24kb∴直线AC的解析式为y=2x﹣4.故答案为:y=2x﹣4.9.(2019•山东省聊城市•3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为.【答案】P(,),【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),三、解答题:10.(2019•湖北省仙桃市•8分)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分析】(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;(2)把x=30代入y=16x+20,即可求解;【解答】解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;(2)把x=30代入y=16x+20,∴y=16×30+20=500;∴一次购买玉米种子30千克,需付款500元;11.(2017·台州改编)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)直接写出关于x的不等式2x+1mx+4的解集;(3)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D.若线段CD长为2,求a的值.【点拨】(1)把点P的坐标代入l1求出b,再将(1,b)代入l2求出m;(2)观察图象,由两直线的交点P的横坐标可得;(3)C,D两点横坐标相同时,线段CD的