第20讲矩形、菱形和正方形1.矩形、菱形、正方形的性质矩形菱形正方形边两组对边分别.两组对边分别__平行__,四条边都__相等两组对边分别__平行__,四条边都__角四个角都是__对角相等,邻角_四个角都是_对角线①互相平分;②相等①互相平分;②互相垂直;③每条对角线平分一组对角①互相平分;②互相垂直;③相等;④每条对角线平分一组对角对称性①中心对称;②轴对称且有2条对称轴①中心对称;②轴对称且有2条对称轴①中心对称;②轴对称且有4条对称轴面积S=ab(a、b表示长与宽)S=12mn(m、n表示两条对角线的长)S=a2(a表示边长)2.矩形、菱形、正方形的判定矩形:①有一个角是直角的;②对角线的平行四边形;③有三个角是四边形;菱形:①有一组邻边_相等_的平行四边形;②对角线的平行四边形;③四条边都相等的四边形;正方形:①一组邻边相等的;②有一个角是直角的菱形;③对角线的平行四边形。3.平行四边形、矩形、菱形、正方形之间的关系考点1:矩形性质与判定【例题1】(2019湖北咸宁市)((7分)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).归纳:与矩形有关的计算:(1)若题目中涉及矩形的折叠,要注意折叠前后对应线段相等、对应角相等,即被折叠的角折叠之后在任何位置依旧是直角;(2)因为矩形四个角都是直角,则想到将所求或涉及的线段放在直角三角形中,常用到勾股定理,特殊角三角函数的计算;(3)常结合矩形对角线相等且互相平分的性质,故可根据矩形对角线的关系应用全等三角形的判定和性质或等腰三角形的性质进行求解.考点2:菱形的性质与判定【例题2】在菱形ABCD中,对角线AC与BD相交于点O.(1)如图1,若点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形;图1图2(2)如图2,若E,F分别在射线DB和射线BD上,且BE=DF.①求证:四边形AECF是菱形;②若∠AEC=60°,AE=6,AB=BE,求AB的长.归纳:1.菱形判定的一般思路:首先判定四边形是平行四边形,然后根据平行四边形的邻边相等判定是菱形,这是判定菱形的最基本思路,同时也可以考虑其他判定方法,例如若能判定平行四边形对角线垂直即可判定为菱形等;2.应用菱形性质计算的一般思路:菱形四边相等;菱形对角线相互垂直:常借助勾股定理和锐角三角函数来求线段的长,有一个角为60°的菱形,60°所对的对角线将菱形分成两个全等的等边三角形.也可以根据菱形既是轴对称图形,又是中心对称图形,结合它的对称性得出的一些结论.考点3:正方形的性质与判定【例题3】(2018·遵义)如图,正方形ABCD的对角线相交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.归纳:1.证明一个四边形是正方形的方法是先证明它是矩形,再证明它是菱形;或先证明它是菱形,再证明它是矩形,其证明过程往往需要借助全等三角形.2.在正方形中求解策略是:利用正方形四个角都是直角或对角线互相垂直且平分相等,通过勾股定理求解.注:正方形可以看作两个全等的等腰直角三角形以斜边为重合边拼接在一起.一、选择题:1.(2019•南京•2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根2.(2019•浙江绍兴•4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变3.(2018·新疆生产建设兵团·5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cmB.4cmC.3cmD.2cm4.(2018广西贵港)如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.33C.26D.4.55.(2018广西南宁)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.1113B.1315C.1517D.1719二、填空题:6.已知正方形ABCD边长为2,E是BC边上一点,将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,则BE的长等于.7.(2019•四川省凉山州•5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.8.(2018广西贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.9.(2019•湖北省咸宁市•3分)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).三、解答题:10.(2019•浙江宁波•10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.11.如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点.(1)若AE=BF=CG=DH.求证:四边形EFGH是矩形;(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DG⊥AC,OF=2,求矩形ABCD的面积.12.(2019•山东省滨州市•13分)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.13.已知:在边长为8的正方形ABCD的各边上截取AE=BF=CG=DH.(1)如图1,连接AF,BG,CH,DE,依次相交于点N,P,Q,M,求证:四边形MNPQ是正方形;(2)如图2,若连接EF,FG,GH,HE.①求证:四边形EFGH是正方形;②当四边形EFGH的面积为50cm2时,求tan∠FEB的值.图1图214.(2019•湖南株洲•8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC.BD的交点,连接CE.DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.