第30讲概率教师版备战2020中考数学专题复习分项提升

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第30讲概率1.事件的分类事件类型定义概率必然事件一定会发生的事件1不可能事件一定不会发生的事件0随机事件在一定条件下可能发生也可能不发生的事件0~1之间2.概率:一般地,表示一个随机事件A发生的可能性大小的数值,叫做这个随机事件A发生的概率.3.概率的计算(1)公式法:对于简单的事件直接用公式法计算即可;P(A)=事件A发生的可能的结果总数m所有可能的结果总数n;(2)列表法:当一次试验涉及两步计算时,且可能出现的结果数目较多时,可采用列表法列出所有可能的结果,再根据P(A)=mn计算概率;(3)画树状图法:当一次试验涉及两步或两步以上的计算时,可采用画树状图表示所有可能的结果,再根据P(A)=mn计算概率.4.几何概型求概率:与几何图形有关的概率的计算,一般是用几何图形中的面积比进行求解,计算公式为P(A)=事件A可能发生的面积几何图形总面积.5.频率与概率(1)用频率估算概率:一般地,在大量重复试验下,随机事件A发生的频率mn(这里n是总试验次数,它必须相当大,m是在n次试验中事件A发生的次数)会稳定到某个常数p.于是,我们用p这个常数表示事件A发生的概率,即P(A)=p;(2)频率与概率的区别与联系①区别:概率是用来表示一个随机事件发生的可能性的大小,只要有一个随机事件存在,就有一个概率存在,而频率是通过试验得到的,它随着试验次数的变化而变化;②联系:当试验次数充分大时,频率稳定在概率的附近摆动,为了求出一个随机事件的概率,通常需要大量的重复试验,用所得的频率来估计随机事件的概率.考点1:频率与概率【例题1】(2019•湖北省仙桃市•7分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为100,a=30;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.【分析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.【解答】解:(1)15÷=100,所以样本容量为100;B组的人数为100﹣15﹣35﹣15﹣5=30,所以a%=×100%=30%,则a=30;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为15+30=45,样本中身高低于160cm的频率为=0.45,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.归纳:利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.考点2:一步概率【例题2抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.【答案】A【分析】抛掷一枚质地均匀的立方体骰子一次,则朝上一面的数字可以是1,2,3,4,5,6六种情况,其中朝上一面的数字为2的只有一种情况,根据概率公式计算即可。【解析】:抛掷一枚质地均匀的立方体骰子一次,则朝上一面的数字共出现六种等可能情况,其中朝上一面的数字为2的只有一种情况,则朝上一面的数字为2的概率是故答案为:A,考点3:几何概型求概率【例题3】(2018贵阳)(3.00分)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A.B.C.D.【答案】A【解析】:恰好摆放成如图所示位置的概率是=,故选:D.考点4:概率的综合计算【例题4】(2018·承德模拟)从背面相同的同一副扑克牌中取出红桃9张,黑桃10张,方块11张,现将这些牌洗匀背面朝上放在桌面上.(1)求从中抽出一张是红桃的概率;(2)现从桌面上先抽掉若干张黑桃,再放入与抽掉的黑桃张数相同的红桃,并洗匀且背面都朝上排开后,随机抽一张是红桃的概率不小于25,问至少抽掉了多少张黑桃?(3)若先从桌面上抽掉9张红桃和m(m>6)张黑桃后,再在桌面上抽出一张牌,当m为何值时,事件“再抽出的这张牌是方块”为必然事件?当m为何值时,事件“再抽出的这张牌是方块”为随机事件?并求出这个事件的概率的最小值.【解析】(1)抽出一张是红桃的概率是99+10+11=310.(2)设至少抽掉了x张黑桃,放入x张的红桃,根据题意,得9+x9+10+11≥25.解得x≥3.答:至少抽掉了3张黑桃.(3)当m为10时,事件“再抽出的这张牌是方块”为必然事件,当m为9,8,7时,事件“再抽出的这张牌是方块”为随机事件,P(最小)=11(10-7)+11=1114.归纳:(1)判断使用列表或画树状图方法:列表法一般适用于两步计算;画树状图法适合于两步及两步以上求概率;(2)不重不漏地列举出所有事件出现的可能结果,并判定每种事件发生的可能性是否相等;(3)确定所有可能出现的结果数n及所求事件A出现的结果数m;(4)用公式P(A)=mn求事件A发生的概率.一、选择题:1.(2019•浙江绍兴•4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.15【答案】D【解答】解:样本中身高不低于180cm的频率==0.15,所以估计他的身高不低于180cm的概率是0.15.故选:D.2.(2019•湖北天门•3分)下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生【答案】C【解答】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明甲的跳远成绩比乙稳定,B错误;C.一组数据2,2,3,4的众数是2,中位数是2.5,正确;D.可能性是1%的事件在一次试验中可能会发生,D错误.故选:C.3.(2019•山东省德州市•4分)甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A.23B.59C.49D.13【答案】C【解答】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为49,故选:C.4.(2019•湖北武汉•3分)从1.2.3.4四个数中随机选取两个不同的数,分别记为A.c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.14B.13C.12D.23【答案】C【解答】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为12,故选:C.5.(2019•湖北省随州市•3分)如图,在平行四边形ABCD中,E为BC的中点,BD,AE交于点O,若随机向平行四边形ABCD内投一粒米,则米粒落在图中阴影部分的概率为()A.110B.112C.18D.16【答案】B【解析】解:∵E为BC的中点,∴,∴=,∴S△BOE=S△AOB,S△AOB=S△ABD,∴S△BOE=S△ABD=S▱ABCD,∴米粒落在图中阴影部分的概率为,故选:B.二、填空题:6.(2019甘肃省陇南市)(4分)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次数3109204849791803139699频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【答案】0.5【解答】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.7.(2019浙江丽水3分)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为.【答案】12【解答】袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是510=12.8.(2019•黑龙江省齐齐哈尔市•3分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为.【答案】22【解答】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.9.(2019•山东省德州市•4分)甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为.【答案】49【解答】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为49,三、解答题:10.(2019•海南省•8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了50个参赛学生的成绩;(2)表1中a=8;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是C;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有320人.表1知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018【分析】(1)本次调查一共随机抽取学生:18÷36%=50(人);(2)a=50﹣18﹣14﹣10=8;(3)本次调查一共随机抽取50名学生,中位数落在C组;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人).【解答】解:(1)本次调查一共随机抽取学生:18÷36%=50(人),故答案为50;(2)a=50﹣18﹣14﹣10=8,故答案为8;(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人),故答案为320.11.(2018·遵义)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.解:画

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功