精品数学课件2020学年湘教版小结与复习学练优九年级数学上(XJ)教学课件第4章锐角三角函数要点梳理考点讲练课堂小结课后作业(2)∠A的余弦:cosA==;(3)∠A的正切:tanA==.要点梳理1.锐角三角函数如图所示,在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.(1)∠A的正弦:∠A的对边斜边sinA=ac;∠A的邻边斜边bc∠A的邻边∠A的对边absin30°=,sin45°=,sin60°=;cos30°=,cos45°=,cos60°=;tan30°=,tan45°=,tan60°=.2.特殊角的三角函数1232332222132123合作探究(1)在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.三边关系:;三角关系:;边角关系:sinA=cosB=,cosA=sinB=,tanA=,tanB=.a2+b2=c2∠A=90°-∠B3.解直角三角形acsincosAAsincosBBbc(2)直角三角形可解的条件和解法◑条件:解直角三角形时知道其中的2个元素(至少有一个是边),就可以求出其余的3个未知元素.◑解法:①一边一锐角,先由两锐角互余关系求出另一锐角;知斜边,再用正弦(或余弦)求另两边;知直角边用正切求另一直角边,再用正弦或勾股定理求斜边;②知两边:先用勾股定理求另一边,再用边角关系求锐角;③斜三角形问题可通过添加适当的辅助线转化为解直角三角形问题.(3)互余两角的三角函数间的关系sinα=,cosα=,sin2α+cos2α=.tanα·tan(90°-α)=.cos(90°-α)sin(90°-α)11对于sinα与tanα,角度越大,函数值越;对于cosα,角度越大,函数值越.大小(4)锐角三角函数的增减性(1)利用计算器求三角函数值第二步:输入角度值,屏幕显示结果.(也有的计算器是先输入角度再按函数名称键)第一步:按计算器键,sintancos4.借助计算器求锐角三角函数值及锐角(2)利用计算器求锐角的度数还可以利用键,进一步得到角的度数.第二步:输入函数值屏幕显示答案(按实际需要进行精确)方法①:°'″2ndF第一步:按计算器键,2ndFsincostan方法②:第二步:输入锐角函数值屏幕显示答案(按实际需要选取精确值).第一步:按计算器键,°'″2ndF(1)仰角和俯角铅直线水平线视线视线仰角俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.5.三角函数的应用以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方位角.如图所示:30°45°BOA东西北南(2)方位角45°45°西南O东北东西北南西北东南图19.4.5坡面与水平面的夹角叫做坡角,记作α,有i=tanα.坡度通常写成1∶m的形式,如i=1∶6.显然,坡度越大,坡角α就越大,坡面就越陡.如图:坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度.记作i,即i=.(3)坡度,坡角hl(4)利用解直角三角形的知识解决实际问题的一般过程是:①将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);②根据条件的特点,适当选用锐角三角函数等去解直角三角形;③得到数学问题的答案;④得到实际问题的答案.ACMN①在测点A安置测倾器,测得M的仰角∠MCE=α;E②量出测点A到物体底部N的水平距离AN=l;③量出测倾器的高度AC=a,可求出MN=ME+EN=l·tanα+a.α(1)测量底部可以到达的物体的高度步骤:6.利用三角函数测高(2)测量东方明珠的高度的步骤是怎么样的呢?①在测点A处安置测倾器,测得此时M的仰角∠MCE=α;ACBDMNEα②在测点A与物体之间的B处安置测倾器,测得此时M的仰角∠MDE=β;β③量出测倾器的高度AC=BD=a,以及测点A,B之间的距离AB=b.根据测量数据,可求出物体MN的高度.,tantanMEMEbMNMEa考点一求三角函数的值考点讲练例1在△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.4543343545解析:根据sinA=,可设三角形的两边长分别为4k,5k,则第三边长为3k,所以tanB=4533.44kkB方法总结:求三角函数值方法较多,解法灵活,在具体的解题中要根据已知条件采取灵活的计算方法,常用的方法主要有:(1)根据特殊角的三角函数值求值;(2)直接运用三角函数的定义求值;(3)借助边的数量关系求值;(4)借助等角求值;(5)根据三角函数关系求值;(6)构造直角三角形求值.1.在△ABC中,∠A、∠B都是锐角,且sinA=cosB,那么△ABC一定是______三角形.直角2.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是____.12针对训练例2矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上,求tan∠AFE.分析:根据题意,结合折叠的性质,易得∠AFE=∠BCF,进而在Rt△BFC中,有BC=8,CF=10,由勾股定理易得BF的长,根据三角函数的定义,易得tan∠BCF的值,借助∠AFE=∠BCF,可得tan∠AFE的值.108解:由折叠的性质可得,CF=CD,∠EFC=∠EDC=90°.∵∠AFE+∠EFC+∠BFC=180°,∴∠AFE+∠BFC=90°.∵∠BCF+∠BFC=90°,∴∠AFE=∠BCF.在Rt△BFC中,BC=8,CF=CD=10,由勾股定理易得BF=6.∴tan∠BCF=.34∴tan∠AFE=tan∠BCF=.34108针对训练解:∵在直角△ABD中,tan∠BAD=∴BD=AD·tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴∴sinC=3.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.3434BDAD,222212513ACADCD,3412.13ADAC考点二特殊角的三角函数值例3计算:032tan60.33解:原式=331231.(1)tan30°+cos45°+tan60°;(2)tan30°·tan60°+cos230°.4.计算:333347.432332432.32解:原式解:原式针对训练考点三解直角三角形例4如图,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC=,求:(1)DC的长;53分析:题中给出了两个直角三角形,DC和sinB可分别在Rt△ACD和Rt△ABC中求得,由AD=BC,图中CD=BC-BD,由此可列方程求出CD.ABCD又BC-CD=BD,解得x=6,∴CD=6.ABCD解:设CD=x,在Rt△ACD中,cos∠ADC=,353553xADxAD,53ADBCBCx,,543xx,(2)sinB的值.ABCD解:BC=BD+CD=4+6=10=AD,在Rt△ACD中,在Rt△ABC中,22221068ACADCD,2264100241ABACBC,8441sin.41241ACBAB方法总结:本考点主要考查已知三角形中的边与角求其他的边与角.解决这类问题一般是结合方程思想与勾股定理,利用锐角三角函数进行求解.5.如图所示,在Rt△ABC中,∠C=90°,AC=3.点D为BC边上一点,且BD=2AD,∠ADC=60°.求△ABC的周长(结果保留根号).针对训练解:在Rt△ADC中,∴BD=2AD=4.∴BC=BD+DC=5.在Rt△ABC中,∴△ABC的周长为AB+BC+ACsin=,ACADCAD∵∠3==1,tantan60ACDCADC∴∠tan=,ACADCDC∵∠3==2,sinsin60ACADADC∴∠2227.ABACBC27523.考点四三角函数的应用例5如图,防洪大堤的横截面是梯形ABCD,其中AD∥BC,α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)解:过点A作AF⊥BC于点F,在Rt△ABF中,∠ABF=∠α=60°,则AF=AB·sin60°=(m),在Rt△AEF中,∠E=∠β=45°,则(m).故改造后的坡长AE为m.103106sin45AFAE106F7.如图,某防洪指挥部发现长江边一处防洪大堤(横断面为梯形ABCD)急需加固,背水坡的坡角为45°,高10米.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽2米,加固后背水坡EF的坡比i=1:.求加固后坝底增加的宽度AF.(结果保留根号)3针对训练ABCDEF45°i=1:3ABCDEF45°i=1:3GH解:作DG⊥AB于G,EH⊥AB于G,则GH=DE=2米,EH=DG=10米.10=103tanEHFHFi∠(米),1032FGFHHG(米).又∵AG=DG=10米,∴(米).故加固后坝底增加的宽度AF为米.1032101038AFFGAG1038例6如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)3解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,DG∥HC,∴∠DAH=∠FAE=30°,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=,∴CG=3,设BC为x,在直角三角形ABC中,33tan1.11BCxACBAC,∠GH在Rt△BDG中,∵BG=DG·tan30°,解得:x≈13,∴大树的高度为:13米.3331.11xDGBGx,,∴33331.113xx∴GH针对训练8.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;答案:点B到AD的距离为20m.C(2)求塔高CD(结果用根号表示).C解:在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°-60°-75°=45°,∴DE=EB=20m,则AD=AE+EB=(m),在Rt△ADC中,∠A=30°,答:塔高CD为m.20320101032ADDC∴(m).10103例7如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=CO/AO,∴CO=AO·tan∠CAO=(45×0.1+x)·tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=DO/BO,∴DO=BO·tan∠DBO=x·tan58°,∵DC=DO-CO,∴36×0.1=x·tan58°-(4.5+x),因此,B处距离码头O大约13.5km.360.14.5360.14.513.5.5811.601x∴9.某海滨浴场东西走向的海