第十讲枚举法(二)【知识梳理】分类列举要选择一定的标准,按照规律一一例举。【典例精讲1】1.甲、乙、丙三个工厂共订600份报纸,每个工厂至少订了199份,至多201份,问:一共有多少种不同的订法?思路分析:分3个厂都订200分,和三个工厂分别订199、200、201份报纸进行讨论。解答:三个工厂都订200份,有1种情况;三个工厂分别订199、200、201份报纸,当甲厂订199份,那么可能乙厂订200份,丙厂订201份,或乙厂订201份,丙厂订200份两种情况;同理乙厂订199份,丙厂订199份也各有2种情况;共有:2×3=6(种),所以三个工厂共有1+6=7(种)不同订法.小结:解决关键是讨论三个工厂分别订199、200、201份报纸的情况进行讨论,先假定一个厂订199份,找出另两个厂的不同订法。【举一反三】1.明明和琳琳共有玩具不超过20个,试问他们各自有玩具的个数有多少种不同情况?2.小悦、冬冬、阿奇三个人一共有7本课外书,每个人至少有一本,小悦、冬冬、阿奇分别有几本课外书?请写出全部可能的情况.【典例精讲2】小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。试判断他们两人谁获胜的可能性大。思路分析:将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。解答:出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。所以,小明获胜的可能性大。小结:解决此类问题的关键是选择好标准,按照标准一一列出。【举一反三】3.数一数,右图中有多少个三角形。4.是否存在自然数n,使得n2+n+2能被3整除?答案及解析:1.【解析】此题可分以下几个步骤讨论:①确定共有20个玩具,每人有玩具情况有21种;②确定共有19个,每人有玩具情况有20种,③确定共有18个,每人有玩具情况有19种…确定共有玩具1个,每人有玩具情况有2种,确定共有玩具0个,每人有玩具情况有1种;再利用加法原理即可解决问题。【答案】:1+2+3+4+…+21=231(种)答:他们各自有书的本数有231种情况。2.【解析】:根据题意,求小悦、冬冬、阿奇分别有几本课外书的过程相当于对7进行整数分拆,每个数最小是1,最大是7-1-1=5,而且可以相同;三人的课外书的本数一共有15种情况:1、1、5;1、2、4;1、3、3;1、4、2;1、5、1;2、1、4;2、2、3;2、3、2;2、4、1;3、1、3;3、2、2;3、3、1;4、1、2;4、2、1;5、1、1,据此解答即可。【答案】:根据题意,求小悦、冬冬、阿奇分别有几本课外书的过程相当于对7进行整数分拆,每个数最小是1,最大是7-1-1=5,而且可以相同;三人的课外书的本数一共有15种情况:1、1、5;1、2、4;1、3、3;1、4、2;1、5、1;2、1、4;2、2、3;2、3、2;2、4、1;3、1、3;3、2、2;3、3、1;4、1、2;4、2、1;5、1、1答:全部可能的情况一共有15种。3.【解析】我们将图形的各部分编上号(见右图),然后按照图形的组成规律,把三角形分成单个的、由两部分组成的、由3部分组成的……再一类一类地列举出来。【答案】:单个的三角形有6个:1,2,3,5,6,8。由两部分组成的三角形有4个:(1,2),(2,6),(4,6),(5,7)。由三部分组成的三角形有1个:(5,7,8)。由四部分组成的三角形有2个:(1,3,4,5),(2,6,7,8)。由八部分组成的三角形有1个:(1,2,3,4,5,6,7,8)。总共有6+4+1+2+1=14(个)。4.【解析】将自然数按照除以3的余数分类,有整除、余1和余2三类,这样只要按类一一枚举就可以了。【答案】:当n能被3整除时,因为n2,n都能被3整除,所以(n2+n+2)÷3余2;当n除以3余1时,因为n2,n除以3都余1,所以(n2+n+2)÷3余1;当n除以3余2时,因为n2÷3余1,n÷3余2,所以(n2+n+2)÷3余2。因为所有的自然数都在这三类之中,所以对所有的自然数n,(n2+n+2)都不能被3整除。