2019-2020学年德州市武城县九年级上册期末数学试卷(有答案)【标准版】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019-2020学年山东省德州市武城县九年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.(4分)下列国旗图案是轴对称图形但不是中心对称图形的是()A.B.C.D.2.(4分)若关于x的一元二次方程(m﹣2)x2+3x+m2﹣3m+2=0的常数项为0,则m等于()A.0B.1C.2D.1或23.(4分)已知反比例函数的图象经过点(﹣1,2),则它的解析式是()A.y=﹣B.y=﹣C.y=D.y=4.(4分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2B.y=2x+1C.y=2x2+1D.y=﹣5.(4分)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.6.(4分)如图,⊙O是△ABC的外接圆,BC=3,∠BAC=30°,则劣弧的长等于()A.B.πC.D.π7.(4分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则ba的值是()A.B.﹣C.4D.﹣18.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.=D.=9.(4分)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则DE的长为()A.2.2B.2.5C.2D.1.810.(4分)用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cmB.3cmC.4cmD.4cm11.(4分)在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球实验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中白色球可能()A.4个B.6个C.34个D.36个12.(4分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题4分,共24分)13.(4分)一元二次方程x2﹣3x=0的较大根是x=.14.(4分)如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,若AP=1,那么线段PP′的长等于.15.(4分)如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为.16.(4分)△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为,面积为.17.(4分)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.18.(4分)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为.三、解答题(本大题共7小题,共78分)19.(10分)解方程:(1)9(2x﹣5)2﹣4=0(2)(2x+1)2=﹣6x﹣320.(10分)在一次数学兴趣小组活动中,小明和小红两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则小明获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则小红获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出小明和小红获胜的概率.21.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n).(1)试确定上述反比例函数和一次函数的表达式;(2)求△ABO的面积;(3)根据图象写出使反比例函数的值大于一次函数值的自变量x的取值范围.22.(10分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)23.(12分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?24.(12分)【操作发现】(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.25.(14分)如图,直线y=﹣x+分别与x轴、y轴交于B,C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点,A点坐标为(﹣1,0).(1)求B、C两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.2019-2020学年山东省德州市武城县九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)下列国旗图案是轴对称图形但不是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:A.2.(4分)若关于x的一元二次方程(m﹣2)x2+3x+m2﹣3m+2=0的常数项为0,则m等于()A.0B.1C.2D.1或2【解答】解:∵关于x的一元二次方程(m﹣2)x2+3x+m2﹣3m+2=0的常数项为0,∴m2﹣3m+2=0,m﹣2≠0,解得:m=1.故选:B.3.(4分)已知反比例函数的图象经过点(﹣1,2),则它的解析式是()A.y=﹣B.y=﹣C.y=D.y=【解答】解:设反比例函数图象设解析式为,将点(﹣1,2)代入得,k=﹣1×2=﹣2,则函数解析式为y=﹣.故选:B.4.(4分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2B.y=2x+1C.y=2x2+1D.y=﹣【解答】解:A、y=﹣3x+2中k=﹣3,∴y随x值的增大而减小,∴A选项符合题意;B、y=2x+1中k=2,∴y随x值的增大而增大,∴B选项不符合题意;C、y=2x2+1中a=2,∴当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大,∴C选项不符合题意;D、y=﹣中k=﹣1,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,∴D选项不符合题意.故选:A.5.(4分)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.6.(4分)如图,⊙O是△ABC的外接圆,BC=3,∠BAC=30°,则劣弧的长等于()A.B.πC.D.π【解答】解:解:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为:=.故选:A.7.(4分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则ba的值是()A.B.﹣C.4D.﹣1【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴ba=(﹣)2=.故选:A.8.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.=D.=【解答】解:∵∠DAE=∠CAB,∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;当=时,△ABC∽△AED.故选:D.9.(4分)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则DE的长为()A.2.2B.2.5C.2D.1.8【解答】解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD===,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴,即,解得DE=.故选:A.10.(4分)用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cmB.3cmC.4cmD.4cm【解答】解:L==4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴这个圆锥形筒的高为=4(cm).故选:C.11.(4分)在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球实验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中白色球可能()A.4个B.6个C.34个D.36个【解答】解:设白球有x个,根据题意得:=15%,解得:x=34,即白色球的个数为34个,故选:C.12.(4分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.二、

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功