1.【2016高考四川文科】已知函数的极小值点,则=()(A)-4(B)-2(C)4(D)2【答案】D考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程的解,但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在附近,如果时,,时,则是极小值点,如果时,,时,,则是极大值点,2.【2015高考福建,文12】“对任意,”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】当时,,构造函数,则.故在单调递增,故,则;当时,不等式等价于,构造函数,则,故在递增,故,则.综上所述,“对任意,”是“”的必要不充分条件,选B.【考点定位】导数的应用.【名师点睛】本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用,根据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题.3.(2014课标全国Ⅰ,文12)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是().A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案:C解析:当a=0时,f(x)=-3x2+1存在两个零点,不合题意;当a>0时,f′(x)=3ax2-6x=,令f′(x)=0,得x1=0,,所以f(x)在x=0处取得极大值f(0)=1,在处取得极小值,要使f(x)有唯一的零点,需,但这时零点x0一定小于0,不合题意;当a<0时,f′(x)=3ax2-6x=,令f′(x)=0,得x1=0,,这时f(x)在x=0处取得极大值f(0)=1,在处取得极小值,要使f(x)有唯一零点,应满足,解得a<-2(a>2舍去),且这时零点x0一定大于0,满足题意,故a的取值范围是(-∞,-2).名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想,较难题.注意区别函数的零点与极值点.4.【2014辽宁文12】当时,不等式恒成立,则实数a的取值范围是()A.B.C.D.【答案】C,故函数递增,则,故;当时,,记,令,得或(舍去),当时,;当时,,故,则.综上所述,实数a的取值范围是.【考点定位】利用导数求函数的极值和最值.【名师点睛】本题考查应用导数研究函数的单调性、极值,不等式恒成立问题.解答本题的关键,是利用分类讨论思想、转化与化归思想,通过构造函数研究其单调性、最值,得出结论.本题属于能力题,中等难度.在考查应用导数研究函数的单调性、极值、不等式恒成立问题等基本方法的同时,考查了考生的逻辑推理能力、运算能力、分类讨论思想及转化与化归思想.5.【2017江苏,20】已知函数32()1(0,)fxxaxbxabR有极值,且导函数()fx的极值点是()fx的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:23ba;(3)若()fx,()fx这两个函数的所有极值之和不小于72,求a的取值范围.【答案】(1)3a(2)见解析(3)36a所以33()1032793aaaabf,又0a,故2239aba.因为()fx有极值,故()=0fx有实根,从而231(27a)039aba,即3a.3a时,()0(1)fxx,故()fx在R上是增函数,()fx没有极值;3a时,()=0fx有两个相异的实根213=3aabx,223=3aabx.列表如下x1(,)x1x12(,)xx2x2(,)x()fx+0–0+()fx极大值极小值故()fx的极值点是12,xx.从而3a,因此2239aba,定义域为(3,).(2)由(1)知,23=9baaaaa.设23()=9tgtt,则22223227()=99tgttt.当36(,)2t时,()0gt,从而()gt在36(,)2上单调递增.因为3a,所以33aa,故()(33)=3gaag,即3ba.因此23ba.(3)由(1)知,()fx的极值点是12,xx,且1223xxa,22212469abxx.从而323212111222()()11fxfxxaxbxxaxbx2222121122121212(32)(32)()()23333xxxaxbxaxbaxxbxx346420279aabab记()fx,()fx所有极值之和为()ha,因为()fx的极值为221339abaa,所以213()=9haaa,3a.因为223()=09haaa,于是()ha在(3,)上单调递减.因为7(6)=2h,于是()(6)hah,故6a.因此a的取值范围为(36],.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.6.【2014高考北京文第20题】(本小题满分13分)已知函数.(1)求在区间上的最大值;(2)若过点存在3条直线与曲线相切,求t的取值范围;(3)问过点分别存在几条直线与曲线相切?(只需写出结论)【答案】(1);(2);(3)详见解析.因为,,,,所以在区间上的最大值为.(2)设过点P(1,t)的直线与曲线相切于点,则,且切线斜率为,所以切线方程为,因此,整理得:,设,则“过点存在3条直线与曲线相切”等价于“有3个不同零点”,=,与的情况如下:01+00+t+3所以,是的极大值,是的极小值,当,即时,此时在区间和上分别至多有1个零点,所以至多有2个零点,当,时,此时在区间和上分别至多有1个零点,所以至多有2个零点.当且,即时,因为,,所以分别为区间和上恰有1个零点,由于在区间和上单调,所以分别在区间和上恰有1个零点.综上可知,当过点存在3条直线与曲线相切时,t的取值范围是.(3)过点A(-1,2)存在3条直线与曲线相切;过点B(2,10)存在2条直线与曲线相切;过点C(0,2)存在1条直线与曲线相切.考点:本小题主要考查导数的几何意义、导数在函数中的应用等基础知识的同时,考查分类讨论、函数与方程、转化与化归等数学思想,考查同学们分析问题与解决问题的能力.利用导数研究函数问题是高考的热点,在每年的高考试卷中占分比重较大,熟练这部分的基础知识、基本题型与基本技能是解决这类问题的关键.7.【2015高考北京,文19】(本小题满分13分)设函数,.(I)求的单调区间和极值;(II)证明:若存在零点,则在区间上仅有一个零点.【答案】(I)单调递减区间是,单调递增区间是;极小值;(II)证明详见解析.取得极小值,同时也是最小值;(II)利用第一问的表,知为函数的最小值,如果函数有零点,只需最小值,从而解出,下面再分情况分析函数有几个零点.试题解析:(Ⅰ)由,()得.由解得.与在区间上的情况如下:所以,的单调递减区间是,单调递增区间是;在处取得极小值.(Ⅱ)由(Ⅰ)知,在区间上的最小值为.因为存在零点,所以,从而.当时,在区间上单调递减,且,所以是在区间上的唯一零点.当时,在区间上单调递减,且,,所以在区间上仅有一个零点.综上可知,若存在零点,则在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值、函数零点问题.【名师点晴】本题主要考查的是导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和函数的零点,属于难题.利用导数求函数的单调性与极值的步骤:①确定函数的定义域;②对求导;③求方程的所有实数根;④列表格.证明函数仅有一个零点的步骤:①用零点存在性定理证明函数零点的存在性;②用函数的单调性证明函数零点的唯一性.8.【2014高考陕西版文第21题】设函数.(1)当(为自然对数的底数)时,求的最小值;(2)讨论函数零点的个数;(3)若对任意恒成立,求的取值范围.【答案】(1)2;(2)当时,函数无零点;当或时,函数有且仅有一个零点;当时,函数有两个零点;(3).设,由求出函数的单调性以及极值,并且求出函数在的零点,画出的大致图像,并从图像中,可以得知,当在不同范围的时候,函数和函数的交点个数(3)对任意恒成立,等价于恒成立,则在上单调递减,即在恒成立,求出的取值范围.试题解析:(1)当时,易得函数的定义域为当时,,此时在上是减函数;当时,,此时在上是增函数;当时,取得极小值(2)函数令,得设当时,,此时在上式增函数;当时,,此时在上式增函数;当时,取极大值令,即,解得,或函数的图像如图所示:由图知:①当时,函数和函数无交点;②当时,函数和函数有且仅有一个交点;③当时,函数和函数有两个交点;④时,函数和函数有且仅有一个交点;综上所述,当时,函数无零点;当或时,函数有且仅有一个零点;当时,函数有两个零点.(3)对任意恒成立等价于恒成立设在上单调递减在恒成立当且仅当当时,的取值范围是考点:利用导数研究函数的极值;函数恒成立问题;函数的零点.【名师点晴】本题主要考查的是利用导数研究函数的极值;函数恒成立问题;函数的零点,属于难题.解第(1)问时一定要注意函数的定义域,在此前提下利用导数研究函数的单调性即可得到函数的最小值,对于第(2)问可构造新函数,,讨论该函数单调性即可得到所要求的零点个数,当人这里中点考察的是分类讨论思想的运用;第(3)问仍然是构造新函数,讨论其导函数在恒成立问题9.【2016高考山东文数】(本小题满分13分)设f(x)=xlnx–ax2+(2a–1)x,a∈R.(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.【答案】(Ⅰ)当时,函数单调递增区间为;当时,函数单调递增区间为,单调递减区间为.(Ⅱ).讨论当时,当时的两种情况下导函数正负号,确定得到函数的单调区间.(Ⅱ)分以下情况讨论:①当时,②当时,③当时,④当时,综合即得.试题解析:(Ⅰ)由可得,则,当时,时,,函数单调递增;当时,时,,函数单调递增,时,,函数单调递减.所以当时,函数单调递增区间为;当时,函数单调递增区间为,单调递减区间为.(Ⅱ)由(Ⅰ)知,.①当时,,单调递减.所以当时,,单调递减.当时,,单调递增.所以在处取得极小值,不合题意.②当时,,由(Ⅰ)知在内单调递增,可得当当时,,时,,所以在(0,1)内单调递减,在内单调递增,所以在处取得极小值,不合题意.③当时,即时,在(0,1)内单调递增,在内单调递减,所以当时,,单调递减,不合题意.④当时,即,当时,,单调递增,当时,,单调递减,所以在处取得极大值,合题意.综上可知,实数a的取值范围为.考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.10.【2016高考浙江文数】(本题满分15分)设函数=,.证明:(I);(II).【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到,从而得到结论;第二问,由得,进行放缩,得到,再结合第一问的结论,得到,从而得到结论.(Ⅱ)由得,故,所以.由(Ⅰ)得,又因为,所以,综上,考点:函数的单调性与最值、分段函数.【思路点睛】(I)先用等比数列前项和公式计算,再用放缩法可得,进而可证;(II)由(I)的结论及放缩法可证.1