百度文库-让每个人平等地提升自我1习题三1.证明下列问题:(1)若矩阵序列mA收敛于A,则TmA收敛于TA,mA收敛于A;(2)若方阵级数0mmmAc收敛,则00)(mmTmTmmmAcAc.证明:(1)设矩阵,,2,1,)()(maAnnmijm则,)()(nnmjiTmaA,)()(nnmijmaA,,2,1m设,)(nnijaA则nnjiTaA)(,,)(nnijaA若矩阵序列mA收敛于A,即对任意的nji,,2,1,,有ijmijmaa)(lim,则jimjimaa)(lim,ijmijmaa)(lim,nji,,2,1,,故TmA收敛于TA,mA收敛于A.(2)设方阵级数0mmmAc的部分和序列为,,,,21mSSS,其中mmmAcAccS10.百度文库-让每个人平等地提升自我2若0mmmAc收敛,设其和为S,即SAcmmm0,或SSmmlim,则TTmmSSlim.而级数0)(mmTmAc的部分和即为TmS,故级数0)(mmTmAc收敛,且其和为TS,即00)(mmTmTmmmAcAc.2.已知方阵序列mA收敛于A,且1mA,1A都存在,证明:(1)AAmmlim;(2)11limAAmm.证明:设矩阵,,2,1,)()(maAnnmijm,)(nnijaA若矩阵序列mA收敛于A,即对任意的nji,,2,1,,有ijmijmaa)(lim.(1)由于对任意的njjj,,,21,有,lim)(kkkjmkjmaank,,2,1,故nnnjjjmnjmjmjjjjmaaa2121)()(2)(1)()1(lim=nnnjjjnjjjjjjaaa21212121)()1(,而nnnjjjmnjmjmjjjjmaaaA2121)()(2)(1)()1(,百度文库-让每个人平等地提升自我3nnnjjjnjjjjjjaaaA21212121)()1(,故AAmmlim.(2)因为nnmijmmAAA)(1)(1,nnijAAA)(11.其中)(mijA,ijA分别为矩阵mA与A的代数余子式.与(1)类似可证明对任意的nji,,2,1,,有ijmijmAA)(lim,结合AAmmlim,有nnmijmmAA)(1lim)(=nnijAA)(1,即11limAAmm.3.设函数矩阵3201sincossin)(ttettttttAt,其中0t,计算),(),(lim0tAdtdtAt),(22tAdtd,)(tAdtd)(tAdtd.解:根据函数矩阵的极限与导数的概念与计算方法,有百度文库-让每个人平等地提升自我4(1)001011010lim0lim1limlimlimsinlimlimcoslimsinlim)(lim300020000000ttettttttAttttttttttt;(2)22323002sincos1sincos)(01)()()sin()(cos)(sin)(ttettttttttettttttAdtdtt;(3)tetttttttAdtddtdtAdtdt6002cos2sin)2(0cossin))(()(222;(4))(tAdtd3201sincossinttetttttt)2cos2(sin)sincos2(]1)cos(sinsin3[32tttttttttttttet(5))(tAdtd=223002sincos1sincosttettttttt)sincos(sin3cos32tttttett.4.设函数矩阵00302)(222xeexxeexAxxxx,计算10)(dxxA和20)(xdttAdxd.解:根据函数矩阵积分变限积分函数的导数的概念与计算方法,有百度文库-让每个人平等地提升自我5(1)10)(dxxA=00302101021010210102xdxdxedxedxxdxxedxexxxx0023011311)1(21212eee;(2)20)(xdttAdxd=)(22xxA=00302224222222xeexexexxxx.5.设,))(,),(),((21TntytytyyA为n阶常数对称矩阵,AyyyfT)(,证明:(1)dtdyAydtdfT2;(2)dtdyyydtdT222.证明:(1)yAyAyyAyydtdfTTT)()(yAyAyyTTT))((yAyT2dtdyAyT2,(2)dtdyyyydtdydtdTT2)(22.6.证明关于迹的下列公式:(1)XXXtrdXdXXtrdXdTT2)()(;(2)TTTBBXtrdXdBXtrdXd)()(;(3)XAAAXXtrdXdTT)()(.其中mmijmnijnmijaAbBxX)(,)()(.百度文库-让每个人平等地提升自我6证明:(1)因为minjijTTxXXtrXXtr112)()(,而ijminjijijxxx2)(112,故XXXtrdXdXXtrdXdTT2)()((2)因为nnmkkjikxbBX)(1,则njmkkjjkTTxbBXtrBXtr11)()(,而jinjmkkjjkijbxbx)(11,故TTTBBXtrdXdBXtrdXd)()(.(3)因为,212221212111mnnnmmTxxxxxxxxxX百度文库-让每个人平等地提升自我7mkknmkmkkmkmkkmkmkknkmkkkmkkkmkknkmkkkmkkkxaxaxaxaxaxaxaxaxaAX112111212211211121111故)()()()(11ln111111mlmkknlkmlmkkjlkljmlmkklklTxaxxaxxaxAXXtr则))(()(11mlmkkjlkljijTijxaxxAXXtrx)]([111mkkjlkijljmkkjlkijljmlxaxxxaxxmlljlimkkjikxaxa11故XAAXAAXAXXtrdXdTTT)()(.7.证明:TTTTTTdXdbadXdabbadXd)(,其中)(),(XbXa为向量函数.证明:设TmTmXbXbXbXbXaXaXaXa))(,),(),(()(,))(,),(),(()(2121,则百度文库-让每个人平等地提升自我8miiiTXbXaXbXa1)()()()(,故它是X的数量函数,设)()()(XbXaXfT,有),,,())()((21nTTxfxfxfXbXadXdminiiinimiiiiixXbXaXbxXaxXbXaXbxXa1111)()()()(,,)()()()(miinimiiimiiiXbxXaXbxXaXbxXa11211))()(,,)()(,)()(())()(,,)()(,)()((11211miniimiiimiiixXbXaxXbXaxXbXaTTTTdXdbadXdab.8.在2R中将向量Txx),(21表示成平面直角坐标系21,xx中的点Txx),(21,分别画出下列不等式决定的向量Txxx),(21全体所对应的几何图形:(1),11x(2),12x(3)1x.解:根据,1211xxx,122212xxx1,max21xxx,作图如下:百度文库-让每个人平等地提升自我99.证明对任何nCyx,,总有)(212222yxyxxyyxTT.证明:因为yyxyyxxxyxyxyxTTTTT)()(22yyxyyxxxyxyxyxTTTTT)()(22故xyyxyxyxTT)(21222210.证明:对任意的nCx,有12xxx.证明:设Tnxxxx),,,(21,则nnnxxxxxxxxxxxx21122221221,,,,,max由于22122221221)(),,,(maxnnnxxxxxxxxx,故21222xxx,即12xxx.11.设naaa,,,21是正实数,证明:对任意nTnCxxxX),,(21,,2112niiixaX百度文库-让每个人平等地提升自我10是nC中的向量范数.证明:因为(1),02112niiixaX且00XX;(2)XkxakxakkxakXniiiniiiniii2112211222112;(3)对于nTnCyyyY),,(21,,TnnyxyxyxYX),,(2211,,则21212122)(2YXYXyaxayxaYXniiiniiiniiii故YXYX.因此2112niiixaX是nC中的向量范数.12.证明:ijnjianA,1max是矩阵nnijaA)(的范数,并且与向量的1-范数是相容的.证明:因为(1)0max,1ijnjianA,且OA0A;(2)AkankkankAijnjiijnji,1,1maxmax;(3)BAbnanbanBAijnjiijnjiijijnji,1,1,1maxmaxmax(4)设TnxxxX),,,(21,则百度文库-让每个人平等地提升自我11TnjjnjnjjjnjjjxaxaxaAX),,,(11211,故njjnjnjjjnjjjxaxaxaAX11111njjnjnjnjjjnjnjjjnjxaxaxa11121111maxmaxmax11,1maxXAxannjjijnji因此ijnjianA,1max是与向量的1-范数相容的矩阵范数.13.设nnCA,且A可逆,证明:11AA.证明:由于IAA1,1I,则111AAAAI,故11AA.14.设nnCA,且,1A证明:AI可逆,而且有(1)AAI11)(1;(2)AAIAI1)(1.证明:(1)由于百度文库-让每个人平等地提升自我12AAIIAI11)()(,故AAIIAAIIAI111)()()(,即AAI11)(1.(2)因为AIAI)(,两边右乘1)(AI,可得11)()(AIAAII,左乘A,整理得11)()(AIAAAAIA