TheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife1高中数学公式总结一、集合1、若集合A中有n个元素,则集合A的所有不同的子集个数为______,所有非空真子集)(Nn的个数是______。2、若_________________ABAABB3、真值表pq非pp或qp且q真真真假假真假假4、常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有大于不大于至少有个n至多有()个1n对所有,成立x存在某,不成立x或pq且pq5、充要条件(1)充分条件:____________________(2)必要条件:____________________(3)充要条件:____________________.二、函数1、二次函数的图象的对称轴方程是______________,顶点坐标是___________。cbxaxy2用待定系数法求二次函数的解析式时,解析式的设法有3种形式,即____________________,____________________和____________________.2、恒成立的充要条件是_________________;0)(2cbxaxxf恒成立的充要条件是_____________________;0)(2cbxaxxf恒成立的充要条件是_________________;0)(2cbxaxxf恒成立的充要条件是_________________;0)(2cbxaxxf3、单调性单调增:①_________________________________________;②___________________________;单调减:①_________________________________________;②___________________________;4、奇偶性(1)前提:(2)奇函数:______________________________________;其图像_______________________;偶函数:______________________________________;其图像_______________________;(3)若函数是奇函数,且在处有定义,则_____________;)(xfy0x(4)多项式函数的奇偶性:110()nnnnPxaxaxa多项式函数是奇函数______________________________________;.()Px多项式函数是偶函数______________________________________;.()PxTheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife25、定义域:6、相同函数:_________________________,_____________________;7、函数图象:(1)指数函数:(2)对数函数:(3)幂函数:(4)三角函数8、对称性与周期性:(1)若,则_______________;若,则_______________;)()(xafxaf)()(xbfxaf(2)若,则_______________;若,则_______________;)()(axfaxf)()(axfxf(3)若,则_______________;若,则_______________;)(1)(xfaxf)()(xfaxf9、计算:(1)________________;_____________________nmanna(2)_______________;_______________;_______________.sraasra)(rab)((3)_____________;_____________;NMaaloglogNMaaloglogmaMnlog_____________;(4)_____________;_____________;;.oaNaalog0______loga1______loga10、导数:(1)__________;(2)____________;(3)_____________;.C')(nx)(sinx(4)_____________;(5)_____________;(6)_____________;.)(cosx)(lnx)(logxa(7)_____________;(8)_____________;)(xe)(xa11、图像变化(1):___________________________________;)()(axfxf(2):___________________________________;axfxf)()((3):___________________________________;|)(|)(xfxf(4):___________________________________;|)(|)(xfxfTheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife3三、三角函数1、若点,点P到原点的距离记为,则sin=_____,cos=_____,tan=____。),(yxPr2、同角三角函数的关系中,平方关系是:__________________;倒数关系是:__________________;相除关系是:__________________.3、诱导公式可用十个字概括为:______________________________________;例如计算:4、函数的最大值是_________,最小值是BxAy)sin(),(其中00A_________,周期是_________,其图象的对称轴是直线_________。5、三角函数的单调区间:的递增区间是____________________,递减区间是____________________xysin)(Zk;)(Zk的递增区间是____________________,递减区间是____________________xycos)(Zk,)(Zk的递增区间是____________________xytan)(Zk6、和角、差角公式:___________________________;_____________________________)sin()cos(____________________)tan(7、二倍角公式是:sin2=_____________;cos2=______________=_______________=_______________;tan2=______________。8、降幂公式是:_______________;_______________;_______________.2sin2coscossin9.特殊角的三角函数值:0643223sincostan10、正弦定理:______________________________________适用情况:___________________________________11、余弦定理:(边的形式)__________________________________(角的形式)____________________________12、面积公式:______________________________________13、△ABC中:________.B)+cos(A,________=B)+sin(A14、辅助角公式:=____________________________sincosab四、平面向量1、坐标运算:设,则2211,,,yxbyxa_____________ba设A、B两点的坐标分别为(x1,y1),(x2,y2),则._______________AB2.实数与向量的积的运算律:TheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife4___________________________,baaa设,则λ.yxa,_________,yxa3.平面向量的数量积:定义:,______________________________________ba;;_______0a_______2a_______||a4.重要定理、公式:(1)平面向量的基本定理如果和是同一平面内的两个不共线向量,那么对该平面内的任一向量,有且只有1e2ea一对实数,使21,______________a(2)两个向量平行的充要条件______________________________//ba(3)两个非零向量垂直的充要条件______________________________/ba五、数列等差数列等比数列__________________________________________定义作用:这是证明一个数列是等差数列或等比数列的方法公式通项公式___________________________na___________________________na前n项和____________________________ns_____________ns①________________________(等差中项)________________________(等比中项)②_____________________qpnm_____________________qpnm③_____________________________成等差数列_____________________________成等比数列性质④六、排列组合、二项式定理②加法原理:_____________________;乘法原理:_____________________。2、排列数公式:=_____________________=_____________________;mnA排列数与组合数的关系:_____________________;组合数公式:=_____________________=_____________________;mnC组合数性质:(1)=______________,+=_______________,mnCmnC1mnC(2)L_______...210nnrnnnnCCCCC3、二项式定理:______________________