2020届高考数学理一轮复习讲义25指数与指数函数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§2.5指数与指数函数最新考纲考情考向分析1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.4.体会指数函数是一类重要的函数模型.直接考查指数函数的图象与性质;以指数函数为载体,考查函数与方程、不等式等交汇问题,题型一般为选择、填空题,中档难度.1.分数指数幂(1)规定:正数的正分数指数幂的意义是mna=nam(a0,m,n∈N+,且mn为既约分数);正数的负分数指数幂的意义是mna=1nam(a0,m,n∈N+,且mn为既约分数);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:aαaβ=aα+β,(aα)β=aαβ,(ab)α=aαbα,其中a0,b0,α,β∈Q.2.指数函数的图象与性质y=axa10a1图象定义域(1)R值域(2)(0,+∞)性质(3)过定点(0,1)(4)当x0时,y1;当x0时,0y1(5)当x0时,0y1;当x0时,y1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数概念方法微思考1.如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的图象,则a,b,c,d与1之间的大小关系为________.提示cd1ab02.结合指数函数y=ax(a0,a≠1)的图象和性质说明ax1(a0,a≠1)的解集跟a的取值有关.提示当a1时,ax1的解集为{x|x0};当0a1时,ax1的解集为{x|x0}.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)nan=(na)n=a(n∈N+).(×)(2)分数指数幂mna可以理解为mn个a相乘.(×)(3)函数y=3·2x与y=2x+1都不是指数函数.(√)(4)若aman(a0,且a≠1),则mn.(×)(5)函数y=2-x在R上为单调减函数.(√)题组二教材改编2.化简416x8y4(x0,y0)=________.答案-2x2y3.若函数f(x)=ax(a0,且a≠1)的图象经过点P2,12,则f(-1)=________.答案2解析由题意知12=a2,所以a=22,所以f(x)=22x,所以f(-1)=22-1=2.4.已知a=1335,b=1435,c=3432,则a,b,c的大小关系是________.答案cba解析∵y=35x是R上的减函数,∴13351435035,即ab1,又c=3432032=1,∴cba.题组三易错自纠5.计算:1332×-760+148×42-2323=________.答案2解析原式=1332×1+342×142-1323=2.6.若函数f(x)=(a2-3)·ax为指数函数,则a=______.答案2解析由指数函数的定义可得a2-3=1,a0,a≠1,解得a=2.7.若函数y=(a2-1)x在(-∞,+∞)上为减函数,则实数a的取值范围是________________.答案(-2,-1)∪(1,2)解析由题意知0a2-11,即1a22,得-2a-1或1a2.8.已知函数f(x)=ax(a0,a≠1)在[1,2]上的最大值比最小值大a2,则a的值为________.答案12或32解析当0a1时,a-a2=a2,∴a=12或a=0(舍去).当a1时,a2-a=a2,∴a=32或a=0(舍去).综上所述,a=12或32.题型一指数幂的运算1.若实数a0,则下列等式成立的是()A.(-2)-2=4B.2a-3=12a3C.(-2)0=-1D.414a=1a答案D解析对于A,(-2)-2=14,故A错误;对于B,2a-3=2a3,故B错误;对于C,(-2)0=1,故C错误;对于D,414a=1a,故D正确.2.计算:23278+120.002-10(5-2)-1+π0=________.答案-1679解析原式=-32-2+12500-105+25-25+2+1=49+105-105-20+1=-1679.3.化简:3112113324140.1abab(a0,b0)=________.答案85解析原式=2×333223322210abab=21+3×10-1=85.4.化简:41232333322533338242aabbaaaaaababa=________(a0).答案a2解析原式=331113332211113333222aabaabb122311331115322aaabaaa5111623331113362.2aaaabaaba思维升华(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.题型二指数函数的图象及应用例1(1)函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0答案D解析由f(x)=ax-b的图象可以观察出,函数f(x)=ax-b在定义域上单调递减,所以0a1,函数f(x)=ax-b的图象是在y=ax的基础上向左平移得到的,所以b0.(2)已知函数f(x)=|2x-1|,abc且f(a)f(c)f(b),则下列结论中,一定成立的是()A.a0,b0,c0B.a0,b≥0,c0C.2-a2cD.2a+2c2答案D解析作出函数f(x)=|2x-1|的图象,如图,∵abc且f(a)f(c)f(b),结合图象知,0f(a)1,a0,c0,∴02a1.∴f(a)=|2a-1|=1-2a1,∴f(c)1,∴0c1.∴12c2,∴f(c)=|2c-1|=2c-1,又∵f(a)f(c),∴1-2a2c-1,∴2a+2c2,故选D.思维升华(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.跟踪训练1(1)已知实数a,b满足等式2019a=2020b,下列五个关系式:①0ba;②ab0;③0ab;④ba0;⑤a=b.其中不可能成立的关系式有()A.1个B.2个C.3个D.4个答案B解析如图,观察易知,a,b的关系为ab0或0ba或a=b=0.(2)方程2x=2-x的解的个数是________.答案1解析方程的解可看作函数y=2x和y=2-x的图象交点的横坐标,分别作出这两个函数的图象(如图).由图象得只有一个交点,因此该方程只有一个解.题型三指数函数的性质及应用命题点1比较指数式的大小例2(1)已知a=432,b=254,c=1325,则()A.bacB.abcC.bcaD.cab答案A解析由a15=15432=220,b15=15452=212,c15=255220,可知b15a15c15,所以bac.(2)若-1a0,则3a,13a,a3的大小关系是__________.(用“”连接)答案3aa313a解析易知3a0,13a0,a30,又由-1a0,得0-a1,所以(-a)313a,即-a3-13a,所以a313a,因此3aa313a.命题点2解简单的指数方程或不等式例3(1)(2018·包头模拟)已知实数a≠1,函数f(x)=4x,x≥0,2a-x,x0,若f(1-a)=f(a-1),则a的值为______.答案12解析当a1时,41-a=21,解得a=12;当a1时,代入不成立.故a的值为12.(2)若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)0的解集为________________.答案{x|x4或x0}解析∵f(x)为偶函数,当x0时,-x0,则f(x)=f(-x)=2-x-4,∴f(x)=2x-4,x≥0,2-x-4,x0,当f(x-2)0时,有x-2≥0,2x-2-40或x-20,2-x+2-40,解得x4或x0.∴不等式的解集为{x|x4或x0}.命题点3指数函数性质的综合应用例4(1)已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上单调递增,则m的取值范围是________.答案(-∞,4]解析令t=|2x-m|,则t=|2x-m|在区间m2,+∞上单调递增,在区间-∞,m2上单调递减.而y=2t在R上单调递增,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有m2≤2,即m≤4,所以m的取值范围是(-∞,4].(2)函数f(x)=4x-2x+1的单调增区间是________.答案[0,+∞)解析设t=2x(t0),则y=t2-2t的单调增区间为[1,+∞),令2x≥1,得x≥0,又y=2x在R上单调递增,所以函数f(x)=4x-2x+1的单调增区间是[0,+∞).(3)若函数f(x)=24313axx-+有最大值3,则a=________.答案1解析令h(x)=ax2-4x+3,y=13h(x),由于f(x)有最大值3,所以h(x)应有最小值-1,因此必有a0,12a-164a=-1,解得a=1,即当f(x)有最大值3时,a的值为1.思维升华(1)利用指数函数的函数性质比较大小或解方程、不等式,最重要的是“同底”原则,比较大小还可以借助中间量;(2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.跟踪训练2(1)函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(bx)与f(cx)的大小关系是()A.f(bx)≤f(cx)B.f(bx)≥f(cx)C.f(bx)f(cx)D.与x有关,不确定答案A解析∵f(x+1)=f(1-x),∴f(x)关于x=1对称,易知b=2,c=3,当x=0时,b0=c0=1,∴f(bx)=f(cx),当x0时,3x2x1,又f(x)在(1,+∞)上单调递增,∴f(bx)f(cx),当x0时,3x2x1,又f(x)在(-∞,1)上单调递减,∴f(bx)f(cx),综上,f(bx)≤f(cx).(2)已知f(x)=2x-2-x,a=1479,b=1597,则f(a),f(b)的大小关系是__________.答案f(b)f(a)解析易知f(x)=2x-2-x在R上为增函数,又a=1479=14971597=b,∴f(a)f(b).(3)若不等式1+2x+4x·a≥0在x∈(-∞,1]时恒成立,则实数a的取值范围是____________.答案-

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功