2020届高考数学文一轮复习讲义第12章121第2课时参数方程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第2课时参数方程最新考纲考情考向分析1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.了解参数的意义,重点考查直线参数方程中参数的几何意义及圆、椭圆的参数方程与普通方程的互化,往往与极坐标结合考查.在高考选做题中以解答题形式考查,难度为中档.1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么x=ft,y=gt就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y-y0=tanα(x-x0)α≠π2x=x0+tcosα,y=y0+tsinα(t为参数)圆x2+y2=r2x=rcosθ,y=rsinθ(θ为参数)椭圆x2a2+y2b2=1(ab0)x=acosφ,y=bsinφ(φ为参数)抛物线y2=2px(p0)x=2pt2,y=2pt(t为参数)概念方法微思考1.在直线的参数方程x=x0+tcosα,y=y0+tsinα(t为参数)中,(1)t的几何意义是什么?(2)如何利用t的几何意义求直线上任意两点P1,P2的距离?提示(1)t表示在直线上过定点P0(x0,y0)与直线上的任一点P(x,y)构成的有向线段P0P的数量.(2)|P1P2|=|t1-t2|=t1+t22-4t1t2.2.圆的参数方程中参数θ的几何意义是什么?提示θ的几何意义为该圆的圆心角.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)参数方程x=ft,y=gt中的x,y都是参数t的函数.(√)(2)方程x=2cosθ,y=1+2sinθ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.(√)(3)已知椭圆的参数方程x=2cost,y=4sint(t为参数),点M在椭圆上,对应参数t=π3,点O为原点,则直线OM的斜率为3.(×)题组二教材改编2.曲线x=-1+cosθ,y=2+sinθ(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=-2x上C.在直线y=x-1上D.在直线y=x+1上答案B解析由x=-1+cosθ,y=2+sinθ,得cosθ=x+1,sinθ=y-2.所以(x+1)2+(y-2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y=-2x上.3.在平面直角坐标系xOy中,若直线l:x=t,y=t-a(t为参数)过椭圆C:x=3cosφ,y=2sinφ(φ为参数)的右顶点,求常数a的值.解直线l的普通方程为x-y-a=0,椭圆C的普通方程为x29+y24=1,∴椭圆C的右顶点坐标为(3,0),若直线l过(3,0),则3-a=0,∴a=3.题组三易错自纠4.直线l的参数方程为x=1+t,y=2-3t(t为参数),求直线l的斜率.解将直线l的参数方程化为普通方程为y-2=-3(x-1),因此直线l的斜率为-3.5.设P(x,y)是曲线C:x=-2+cosθ,y=sinθ(θ为参数,θ∈[0,2π))上任意一点,求yx的取值范围.解由曲线C:x=-2+cosθ,y=sinθ(θ为参数),得(x+2)2+y2=1,表示圆心为(-2,0),半径为1的圆.yx表示的是圆上的点和原点连线的斜率,设yx=k,则原问题转化为y=kx和圆有交点的问题,即圆心到直线的距离d≤r,所以|-2k|1+k2≤1,解得-33≤k≤33,所以yx的取值范围为-33,33.6.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是x=32t+m,y=12t(t为参数).(1)求曲线C的直角坐标方程和直线l的普通方程;(2)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA|·|PB|=1,求实数m的值.解(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得曲线C的直角坐标方程为x2+y2-2x=0.直线l的参数方程是x=32t+m,y=12t(t为参数),消去参数t可得x=3y+m,即直线l的普通方程为3y-x+m=0.(2)把x=32t+m,y=12t(t为参数)代入方程x2+y2=2x,化为t2+(3m-3)t+m2-2m=0,①由Δ0,解得-1m3.设t1,t2为方程①的两个实数根,∴t1t2=m2-2m.∵|PA|·|PB|=1=|t1t2|,∴m2-2m=±1,解得m=1±2或m=1,满足Δ0.∴实数m=1±2或m=1.题型一参数方程与普通方程的互化1.(2018·包头调研)在平面直角坐标系xOy中,直线l的参数方程为x=-5+22t,y=5+22t(t为参数),以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.(1)求曲线C的直角坐标方程及直线l的普通方程;(2)将曲线C上的所有点的横坐标缩短为原来的12,再将所得到的曲线向左平移1个单位长度,得到曲线C1,求曲线C1上的点到直线l的距离的最小值.解(1)曲线C的直角坐标方程为x2+y2=4x,即(x-2)2+y2=4.直线l的普通方程为x-y+25=0.(2)将曲线C上的所有点的横坐标缩短为原来的12,得(2x-2)2+y2=4,即(x-1)2+y24=1,再将所得曲线向左平移1个单位长度,得曲线C1:x2+y24=1,则曲线C1的参数方程为x=cosθ,y=2sinθ(θ为参数).设曲线C1上任一点P(cosθ,2sinθ),则点P到直线l的距离d=|cosθ-2sinθ+25|2=|25-5sinθ+φ|2≥102其中tanφ=-12,所以点P到直线l的距离的最小值为102.2.在《圆锥曲线论》中,阿波罗尼奥斯第一次从一个对顶圆锥(直或斜)得到所有的圆锥曲线,并命名了椭圆(ellipse)、双曲线(hyperboler)和抛物线(parabola),在这本晦涩难懂的书中有一个著名的几何问题:“在平面上给定两点A,B,设P点在同一平面上且满足|PA||PB|=λ(λ0且λ≠1),P点的轨迹是圆.”这个圆我们称之为“阿波罗尼奥斯圆”.已知点M与长度为3的线段OA两端点的距离之比为|OM||MA|=12,建立适当坐标系,求出M点的轨迹方程并化为参数方程.解由题意,以OA所在直线为x轴,过O点作OA的垂线为y轴,建立直角坐标系,设M(x,y),则O(0,0),A(3,0).因为|OM||MA|=12,即x2+y2x-32+y2=12,化简得(x+1)2+y2=4,所以点M的轨迹是以(-1,0)为圆心,2为半径的圆.由圆的参数方程可得x=2cosθ-1,y=2sinθ.思维升华消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.题型二参数方程的应用例1在直角坐标系xOy中,曲线C的参数方程为x=2cosθ,y=4sinθ(θ为参数),直线l的参数方程为x=1+tcosα,y=2+tsinα(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.解(1)曲线C的直角坐标方程为x24+y216=1.当cosα≠0时,l的直角坐标方程为y=tanα·x+2-tanα,当cosα=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cosα+sinα)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-42cosα+sinα1+3cos2α,故2cosα+sinα=0,于是直线l的斜率k=tanα=-2.思维升华(1)解决直线与椭圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与椭圆的位置关系来解决.(2)对于形如x=x0+at,y=y0+bt(t为参数),当a2+b2≠1时,应先化为标准形式后才能利用t的几何意义解题.跟踪训练1已知椭圆C:x24+y23=1,直线l:x=-3+3t,y=23+t(t为参数).(1)写出椭圆C的参数方程及直线l的普通方程;(2)设A(1,0),若椭圆C上的点P满足到点A的距离与到直线l的距离相等,求点P的坐标.解(1)椭圆C的参数方程为x=2cosθ,y=3sinθ(θ为参数),直线l的普通方程为x-3y+9=0.(2)设P(2cosθ,3sinθ),则|AP|=2cosθ-12+3sinθ2=2-cosθ,P到直线l的距离d=|2cosθ-3sinθ+9|2=2cosθ-3sinθ+92.由|AP|=d,得3sinθ-4cosθ=5,又sin2θ+cos2θ=1,得sinθ=35,cosθ=-45.故P-85,335.题型三极坐标方程和参数方程的综合应用例2(2017·全国Ⅲ)在直角坐标系xOy中,直线l1的参数方程为x=2+t,y=kt(t为参数),直线l2的参数方程为x=-2+m,y=mk(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-2=0,M为l3与C的交点,求M的极径.解(1)消去参数t,得l1的普通方程l1:y=k(x-2);消去参数m,得l2的普通方程l2:y=1k(x+2).设P(x,y),由题设得y=kx-2,y=1kx+2.消去k得x2-y2=4(y≠0).所以C的普通方程为x2-y2=4(y≠0).(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0θ2π,θ≠π).联立ρ2cos2θ-sin2θ=4,ρcosθ+sinθ-2=0,得cosθ-sinθ=2(cosθ+sinθ).故tanθ=-13,从而cos2θ=910,sin2θ=110.代入ρ2(cos2θ-sin2θ)=4,得ρ2=5,所以交点M的极径为5.思维升华在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷的解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.跟踪训练2(1)已知曲线C1的极坐标方程为ρ=2cosθsin2θ,C2的参数方程为x=2+22t,y=2-22t(t为参数).①将曲线C1与C2的方程化为直角坐标系下的普通方程;②若C1与C2相交于A,B两点,求|AB|.解①曲线C1的极坐标方程ρ=2cosθsin2θ,即ρ2sin2θ=2ρcosθ,∴曲线C1的普通方程为y2=2x,曲线C2的参数方程为x=2+22t,y=2-22t(t为参数),消去参数t,得C2的普通方程为x+y=4.②将C2的参数方程代入C1的普通方程并化简得12t2-32t=0,解得t1=0,t2=62,故|AB|=|t1-t2|=62.(2)已知直线l:x=5+32t,y=3+12t(t为参数),以坐标原点为

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功