第十三节导数与函数的综合问题导数与不等式►考法1证明不等式【例1】已知函数f(x)=x+aex(a∈R).(1)讨论函数f(x)的单调性;(2)当x<0,a≤1时,证明:x2+(a+1)x>xf′(x).[解](1)由f(x)=x+aex可得f′(x)=1+aex.当a≥0时,f′(x)>0,则函数f(x)在(-∞,+∞)上为增函数.当a<0时,由f′(x)>0可得x<ln-1a,由f′(x)<0可得x>ln-1a,所以函数f(x)在-∞,ln-1a上为增函数,在ln-1a,+∞上为减函数.(2)证明:设F(x)=x2+(a+1)x-xf′(x)=x2+ax-axex=x(x+a-aex).设H(x)=x+a-aex,则H′(x)=1-aex.∵x<0,∴0<ex<1,又a≤1,∴1-aex≥1-ex>0.∴H(x)在(-∞,0)上为增函数,则H(x)<H(0)=0,即x+a-aex<0.由x<0可得F(x)=x(x+a-aex)>0,所以x2+(a+1)x>xf′(x).►考法2解决不等式恒成立(存在性)问题【例2】设f(x)=ax+xlnx,g(x)=x3-x2-3.(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(2)如果对于任意的s,t∈12,2,都有f(s)≥g(t)成立,求实数a的取值范围.[解](1)存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,等价于[g(x1)-g(x2)]max≥M.由g(x)=x3-x2-3,得g′(x)=3x2-2x=3xx-23.令g′(x)>0得x<0,或x>23,令g′(x)<0得0<x<23,又x∈[0,2],所以g(x)在区间0,23上单调递减,在区间23,2上单调递增,所以g(x)min=g23=-8527,又g(0)=-3,g(2)=1,所以g(x)max=g(2)=1.故[g(x1)-g(x2)]max=g(x)max-g(x)min=11227≥M,则满足条件的最大整数M=4.(2)对于任意的s,t∈12,2,都有f(s)≥g(t)成立,等价于在区间12,2上,函数f(x)min≥g(x)max,由(1)可知在区间12,2上,g(x)的最大值为g(2)=1.在区间12,2上,f(x)=ax+xlnx≥1恒成立等价于a≥x-x2lnx恒成立.设h(x)=x-x2lnx,h′(x)=1-2xlnx-x,令m(x)=xlnx,由m′(x)=lnx+1>0得x>1e.即m(x)=xlnx在1e,+∞上是增函数,可知h′(x)在区间12,2上是减函数,又h′(1)=0,所以当1<x<2时,h′(x)<0;当12<x<1时,h′(x)>0.即函数h(x)=x-x2lnx在区间12,1上单调递增,在区间(1,2)上单调递减,所以h(x)max=h(1)=1,所以a≥1,即实数a的取值范围是[1,+∞).[规律方法]1.利用导数证明含“x”不等式方法,证明:fx>gx法一:移项,fx-gx>0,构造函数Fx=fx-gx,转化证明Fxmin>0,利用导数研究Fx单调性,用上定义域的端点值.法二:转化证明:fxmin>gxmax.,法三:先对所求证不等式进行变形,分组或整合,再用法一或法二.2.利用导数解决不等式的恒成立问题的策略首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.也可分离变量,构造函数,直接把问题转化为函数的最值问题.3.“恒成立”与“存在性”问题的求解是“互补”关系,即fxga对于x∈D恒成立,应求fx的最小值;若存在x∈D,使得fxga成立,应求fx的最大值.应特别关注等号是否成立问题.(2018·全国卷Ⅰ节选)已知函数f(x)=aex-lnx-1.证明:当a≥1e时,f(x)≥0.[解]证明:当a≥1e时,f(x)≥exe-lnx-1.设g(x)=exe-lnx-1,则g′(x)=exe-1x.当0x1时,g′(x)0;当x1时,g′(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)≥g(1)=0.因此,当a≥1e时,f(x)≥0.利用导数研究函数的零点问题【例3】(2019·黄山模拟)设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围.[解](1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.因为f(0)=c,f′(0)=b,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=bx+c.(2)当a=b=4时,f(x)=x3+4x2+4x+c,所以f′(x)=3x2+8x+4.令f′(x)=0,得3x2+8x+4=0,解得x=-2或x=-23.当x变化时,f(x)与f′(x)的变化情况如下:x(-∞,-2)-2-2,-23-23-23,+∞f′(x)+0-0+f(x)↗c↘c-3227↗所以,当c>0且c-3227<0,存在x1∈(-4,-2),x2∈-2,-23,x3∈-23,0,使得f(x1)=f(x2)=f(x3)=0.由f(x)的单调性知,当且仅当c∈0,3227时,函数f(x)=x3+4x2+4x+c有三个不同零点.[规律方法]利用导数研究方程根的方法研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.根据题目要求,画出函数图象的走势规律,标明函数极最值的位置.可以通过数形结合的思想去分析问题,使问题的求解有一个清晰、直观的整体展现.设函数f(x)=x22-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,e]上仅有一个零点.[解](1)由f(x)=x22-klnx(k>0),得x>0且f′(x)=x-kx=x2-kx.由f′(x)=0,解得x=k(负值舍去).f(x)与f′(x)在区间(0,+∞)上的变化情况如下表:x(0,k)k(k,+∞)f′(x)-0+f(x)↘k1-lnk2↗所以,f(x)的单调递减区间是(0,k),单调递增区间是(k,+∞),f(x)在x=k处取得极小值f(k)=k-lnk2,无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f(k)=k-lnk2.因为f(x)存在零点,所以k-lnk2≤0,从而k≥e,当k=e时,f(x)在区间(1,e)上单调递减,且f(e)=0,所以x=e是f(x)在区间(1,e]上的唯一零点.当k>e时,f(x)在区间(1,e)上单调递减,且f(1)=12>0,f(e)=e-k2<0,所以f(x)在区间(1,e]上仅有一个零点.综上可知,若f(x)存在零点,则f(x)在区间(1,e]上仅有一个零点.利用导数研究生活中的优化问题【例4】某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路分别为l1,l2,山区边界曲线为C,计划修建的公路为l.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米.以l2,l1所在的直线分别为x轴,y轴,建立平面直角坐标系xOy.假设曲线C符合函数y=ax2+b(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于点P,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.[解](1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=ax2+b,得a25+b=40,a400+b=2.5,解得a=1000,b=0.(2)①由(1)知,y=1000x2(5≤x≤20),则点P的坐标为t,1000t2,设公路l交x轴,y轴分别为A,B两点,如图所示,又y′=-2000x3,则直线l的方程为y-1000t2=-2000t3(x-t),由此得A3t2,0,B0,3000t2.故f(t)=3t22+3000t22=32t2+4×106t4,t∈[5,20].②设g(t)=t2+4×106t4,t∈[5,20],则g′(t)=2t-16×106t5.令g′(t)=0,解得t=102.当t∈[5,102)时,g′(t)<0,g(t)是减函数;当t∈(102,20]时,g′(t)>0,g(t)是增函数.所以当t=102时,函数g(t)有极小值,也是最小值,所以g(t)min=300,此时f(t)min=153.故当t=102时,公路l的长度最短,最短长度为153千米.[规律方法]利用导数解决生活中的实际应用问题的4步骤某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.[解](1)因为蓄水池侧面的总成本为100×2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又根据题意知200πrh+160πr2=12000π,所以h=15r(300-4r2),从而V(r)=πr2h=π5(300r-4r3).因为r0,又由h0可得r53,故函数V(r)的定义域为(0,53).(2)因为V(r)=π5(300r-4r3),所以V′(r)=π5(300-12r2),令V′(r)=0,解得r1=5,r2=-5(舍去).当r∈(0,5)时,V′(r)0,故V(r)在(0,5)上为增函数;当r∈(5,53)时,V′(r)0,故V(r)在(5,53)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.1.(2018·全国卷Ⅲ)已知函数f(x)=ax2+x-1ex.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.[解](1)f′(x)=-ax2+a-x+2ex,f′(0)=2.因此曲线y=f(x)在(0,-1)处的切线方程是2x-y-1=0.(2)当a≥1时,f(x)+e≥(x2+x-1+ex+1)e-x.令g(x)=x2+x-1+ex+1,则g′(x)=2x+1+ex+1.当x-1时,g′(x)0,g(x)单调递减;当x-1时,g′(x)0,g(x)单调递增.所以g(x)≥g(-1)=0.因此f(x)+e≥0.2.(2015·全国卷Ⅰ)设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+aln2a.[解](1)f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x0).当a≤0时,f′(x)0,f′(x)没有零点;当a0时,设u(x)=e2x,v(x)=-ax,因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-ax在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)0,当b满足0ba4且b14时,f′(b)0,故当a0时,f′(x)存在唯一零点.(2)证明:由(1),可设f′(x)在