2020版高考数学一轮复习第4章平面向量数系的扩充与复数的引入第3节平面向量的数量积与平面向量应用举

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第三节平面向量的数量积与平面向量应用举例[考纲传真]1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量的夹角已知两个非零向量a和b,作OA→=a,OB→=b,则∠AOB叫做向量a与b的夹角,向量夹角的范围是[0°,180°],其中当a与b的夹角是90°时,a与b垂直,记作a⊥b,当a与b的夹角为0°时,a∥b,且a与b同向,当a与b的夹角为180°时,a∥b,且a与b反向.2.平面向量的数量积定义已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|·cosθ叫做a与b的数量积(或内积),记作a·b.规定:零向量与任一向量的数量积为0投影|a|cosθ叫做向量a在b方向上的投影;|b|cosθ叫做向量b在a方向上的投影几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积3.平面向量数量积的运算律(1)交换律:a·b=b·a;(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb);(3)分配律:a·(b+c)=a·b+a·c.4.平面向量数量积的性质及其坐标表示设非零向量a=(x1,y1),b=(x2,y2),θ=〈a,b〉.结论几何表示坐标表示模|a|=a·a|a|=x21+y21数量积a·b=|a||b|cosθa·b=x1x2+y1y2夹角cosθ=a·b|a||b|cosθ=x1x2+y1y2x21+y21·x22+y22a⊥ba·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21·x22+y22[常用结论]1.两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;两个向量a,b的夹角为钝角⇔a·b<0且a,b不共线.2.平面向量数量积运算的常用公式(1)(a+b)·(a-b)=a2-b2.(2)(a+b)2=a2+2a·b+b2.(3)(a-b)2=a2-2a·b+b2.3.当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)在△ABC中,向量AB→与BC→的夹角为∠B.()(2)向量在另一个向量方向上的投影为数量,而不是向量.()(3)若a·b>0,则a和b的夹角为锐角;若a·b<0,则a和b的夹角为钝角.()(4)a·b=a·c(a≠0),则b=c.()[答案](1)×(2)√(3)×(4)×2.(教材改编)设a=(5,-7),b=(-6,t),若a·b=-2,则t的值为()A.-4B.4C.327D.-327A[a·b=5×(-6)-7t=-2,解得t=-4,故选A.]3.(教材改编)已知|a|=2,|b|=6,a·b=-63,则a与b的夹角θ为()A.π6B.π3C.2π3D.5π6D[cosθ=a·b|a||b|=-632×6=-32,又0≤θ≤π,则θ=5π6,故选D.]4.已知向量a=(-2,3),b=(3,m),且a⊥b,则m=________.2[由a⊥b得a·b=0,即-6+3m=0,解得m=2.]5.(教材改编)已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________.-2[由数量积的定义知,b在a方向上的投影为|b|cosθ=4×cos120°=-2.]平面向量数量积的运算1.(2018·全国卷Ⅱ)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=()A.4B.3C.2D.0B[因为|a|=1,a·b=-1,所以a·(2a-b)=2|a|2-a·b=2×12-(-1)=3,故选B.]2.已知AB→=(2,1),点C(-1,0),D(4,5),则向量AB→在CD→方向上的投影为()A.-322B.-35C.322D.35C[因为点C(-1,0),D(4,5),所以CD=(5,5),又AB→=(2,1),所以向量AB→在CD→方向上的投影为|AB→|cos〈AB→,CD→〉=AB→·CD→|CD→|=1552=322,故选C.]3.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则AF→·BC→的值为()A.-58B.18C.14D.118B[如图所示,AF→=AD→+DF→.又D,E分别为AB,BC的中点,且DE=2EF,所以AD→=12AB→,DF→=12AC→+14AC→=34AC→,所以AF→=12AB→+34AC→.又BC→=AC→-AB→,则AF→·BC→=12AB→+34AC→·(AC→-AB→)=12AB→·AC→-12AB→2+34AC→2-34AC→·AB→=34AC→2-12AB→2-14AC→·AB→.又|AB→|=|AC→|=1,∠BAC=60°,故AF→·BC→=34-12-14×1×1×12=18.故选B.][规律方法]平面向量数量积的三种运算方法当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos〈a,b〉.当已知向量的坐标时,可利用坐标法求解,即若a=x1,y1,b=x2,y2,则a·b=x1x2+y1y2.利用数量积的几何意义求解.平面向量数量积的应用►考法1求向量的模【例1】(1)已知平面向量a,b的夹角为π6,且|a|=3,|b|=2,在△ABC中,AB→=2a+2b,AC→=2a-6b,D为BC中点,则|AD→|等于()A.2B.4C.6D.8(2)(2019·广州模拟)已知向量a,b的夹角为60°,|a|=2,|a-2b|=2,则|b|等于()A.4B.2C.2D.1(1)A(2)D[(1)因为AD→=12(AB→+AC→)=12(2a+2b+2a-6b)=2a-2b,所以|AD→|2=4(a-b)2=4(a2-2b·a+b2)=4×3-2×2×3×cosπ6+4=4,则|AD→|=2.(2)由|a-2b|=2,得(a-2b)2=|a|2-4a·b+4|b|2=4,即|a|2-4|a||b|cos60°+4|b|2=4,即|b|2-|b|=0,解得|b|=0(舍去)或|b|=1,故选D.]►考法2求向量的夹角【例2】(1)已知向量a,b满足(a+2b)·(5a-4b)=0,且|a|=|b|=1,则a与b的夹角θ为()A.3π4B.π4C.π3D.2π3(2)若向量a=(k,3),b=(1,4),c=(2,1),已知2a-3b与c的夹角为钝角,则k的取值范围是________.(1)C(2)-∞,-92∪-92,3[(1)∵(a+2b)·(5a-4b)=0,∴5a2+6a·b-8b2=0.又|a|=|b|=1,∴a·b=12,∴cosθ=a·b|a||b|=12.又θ∈[0,π],∴θ=π3,故选C.(2)因为2a-3b与c的夹角为钝角,所以(2a-3b)·c<0,即(2k-3,-6)·(2,1)<0,所以4k-6-6<0,所以k<3.又若(2a-3b)∥c,则2k-3=-12,即k=-92.当k=-92时,2a-3b=(-12,-6)=-6c,即2a-3b与c反向.综上,k的取值范围为-∞,-92∪-92,3.]►考法3平面向量的垂直问题【例3】(1)已知向量a=(1,-1),b=(6,-4).若a⊥(ta+b),则实数t的值为________.(2)已知向量AB→与AC→的夹角为120°,且|AB→|=3,|AC→|=2.若AP→=λAB→+AC→,且AP→⊥BC→,则实数λ的值为________.(1)-5(2)712[(1)∵a=(1,-1),b=(6,-4),∴ta+b=(t+6,-t-4).又a⊥(ta+b),则a·(ta+b)=0,即t+6+t+4=0,解得t=-5.(2)由AP→⊥BC→得AP→·BC→=0,即(λAB→+AC→)·(AC→-AB→)=0,∴(λ-1)AB→·AC→-λAB→2+AC→2=0,即-3(λ-1)-9λ+4=0.解得λ=712.][规律方法]平面向量数量积求解问题的策略求两向量的夹角:,要注意θ∈[0,π].两向量垂直的应用:两非零向量垂直的充要条件是:a⊥b⇔a·b=0⇔|a-b|=|a+b|.求向量的模:利用数量积求解长度问题的处理方法有:①a2=a·a=|a|2或|a|=a·a.③若a=x,y,则|a|=x2+y2.(1)(2017·全国卷Ⅰ)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.(2)(2017·山东高考)已知e1,e2是互相垂直的单位向量.若3e1-e2与e1+λe2的夹角为60°,则实数λ的值是________.(1)23(2)33[(1)法一:|a+2b|=a+2b2=a2+4a·b+4b2=22+4×2×1×cos60°+4×12=12=23.法二:(数形结合法)由|a|=|2b|=2,知以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=|OC→|.又∠AOB=60°,所以|a+2b|=23.(2)由题意知|e1|=|e2|=1,e1·e2=0,|3e1-e2|=3e1-e22=3e21-23e1·e2+e22=3-0+1=2.同理|e1+λe2|=1+λ2.所以cos60°=3e1-e2e1+λe2|3e1-e2||e1+λe2|=3e21+3λ-e1·e2-λe2221+λ2=3-λ21+λ2=12,解得λ=33.]平面向量与三角函数的综合【例4】(2017·江苏高考)已知向量a=(cosx,sinx),b=(3,-3),x∈[0,π].(1)若a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.[解](1)因为a=(cosx,sinx),b=(3,-3),a∥b,所以-3cosx=3sinx.若cosx=0,则sinx=0,与sin2x+cos2x=1矛盾,故cosx≠0.于是tanx=-33.又x∈[0,π],所以x=5π6.(2)f(x)=a·b=(cosx,sinx)·(3,-3)=3cosx-3sinx=23cosx+π6.因为x∈[0,π],所以x+π6∈π6,7π6,从而-1≤cosx+π6≤32.于是,当x+π6=π6,即x=0时,f(x)取到最大值3;当x+π6=π,即x=5π6时,f(x)取到最小值-23.[规律方法]平面向量与三角函数的综合问题的解题思路题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数的定义域内的有界性,求得值域等.在平面直角坐标系xOy中,已知向量m=22,-22,n=(sinx,cosx),x∈0,π2.(1)若m⊥n,求tanx的值;(2)若m与n的夹角为π3,求x的值.[解](1)因为m=22,-22,n=(sinx,cosx),m⊥n.所以m·n=0,即22sinx-22cosx=0,所以sinx=cosx,所以tanx=1.(2)因为|m|=|n|=1,所以m·n=cosπ3=12,即22sinx-22cosx=12,所以sinx-π4=12,因为0<x<π2,所以-π4<x-π4<π4,所以x-π4=π6,即x=5π12.1.(2016·全国卷Ⅲ)已知向量BA→=12,32,BC→=32,12,则∠ABC=()A.30°B.45°C.60°D.120°A[因为BA→=

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功