第三讲分式及其运算命题点分类集训命题点1分式有意义的条件【命题规律】考查方式:①确定分母中给出简单含未知数的代数式;②令分母中的代数式不等于0;③解不等式,确定出未知数的取值范围;④选择或填写出正确的答案.【命题预测】分式有意义的条件是简单题型的一种命题模式,考查形式为选择或填空题.1.如果分式2x-1有意义,那么x的取值范围是________.1.x≠1【解析】要分式有意义,则分式的分母不能为0,即x-1≠0,即x≠1.2.若代数式x-1x有意义,则x的取值范围是________.2.x≥1【解析】要原式有意义,则x-1≥0x≠0,∴x≥1.命题点2分式值为0的条件【命题规律】考查题型及形式:选择题和填空题中一般考查两项分式化简;考查方式:经常题目中暗含分式有意义的条件,需要同时满足才能确定出未知数的取值范围.【命题预测】分式值为0仍是重要考查知识点,在选择题或填空题中考查将成为常态化.3.已知分式(x-1)(x+2)x2-1的值为0,那么x的值是()A.-1B.-2C.1D.1或-23.B【解析】分式(x-1)(x+2)x2-1的值为0,须满足:(x-1)(x+2)=0x2-1≠0,解得x=-2.4.当x=________时,分式x-22x+5的值为0.4.2【解析】根据题意得x-2=02x+5≠0,解得x=2.命题点3分式的化简【命题规律】考查题型及形式:①选择题和填空题中一般考查两项分式化简;②解答题中一般考查三项分式运算,涉及乘除和加减运算,有时会含括号;③考查运算顺序:通分、因式分解、约分、化简等知识.【命题预测】分式的化简仍是重要考查知识点,其中选择题或填空题考查居多.5.下列分式中,最简分式是()A.x2-1x2+1B.x+1x2-1C.x2-2xy+y2x2-xyD.x2-362x+125.A【解析】A.x2-1x2+1分子分母中无公因式,是最简分式;B.x+1x2-1=x+1(x+1)(x-1)=1x-1,故不是最简分式;C.x2-2xy+y2x2-xy=(x-y)2x(x-y)=x-yx,故不是最简分式;D.x2-362x+12=(x+6)(x-6)2(x+6)=x-62,故不是最简分式.6.计算:5c26ab·3ba2c=________.6.5c2a37.化简:x+3x2-4x+4÷x2+3x(x-2)2=________.7.1x8.计算aa-1-3a-1a2-1.8.解:原式=aa-1-3a-1(a-1)(a+1)=a(a+1)-(3a-1)(a-1)(a+1)=a2+a-3a+1(a-1)(a+1)=(a-1)2(a-1)(a+1)=a-1a+1.9.化简:a-b-(a+b)2a+b.9.解:原式=a-b-(a+b)=a-b-a-b=-2b.10.(mm-2-2mm2-4)÷mm+2.10.解:原式=[m2+2m(m-2)(m+2)-2m(m-2)(m+2)]÷mm+2=m2(m-2)(m+2)·m+2m=mm-2.11.化简:(x-5+16x+3)÷x-1x2-9.11.解:原式=(x-5)(x+3)+16x+3÷x-1x2-9=x2-2x+1x+3·x2-9x-1(2分)=(x-1)2x+3·(x+3)(x-3)x-1=(x-1)(x-3)=x2-4x+3.命题点4分式化简求值【命题规律】1.考查形式:多以解答题形式设题,都是先化简分式,再求值,一般为三项分式运算,考查分式加减乘除及括号等运算;2.题中所给字母为1个或2个,1个居多.字母取值形式:①直接给出数值;②自选一个数字;③在给定的数字中选取合适的数;④对给定的方程求解,再进行取舍代值;⑤在整数范围内任选数字等.【命题预测】分式化简求值是一种命题的主要趋势,代值形式设题会比较灵活,考查题型为解答题.12.先化简,再求值:2x2-2xx2-1-xx+1,其中x=-2.12.解:原式=2x(x-1)(x-1)(x+1)-xx+1=2xx+1-xx+1=xx+1.当x=-2时,原式=xx+1=-2-2+1=2.13.先化简,再求值:(1+1x-1)÷x2,其中x=2016.13.解:原式=xx-1÷x2=xx-1·2x=2x-1.当x=2016时,原式=2x-1=22016-1=22015.14.先化简,再求值:aa-b(1b-1a)+a-1b,其中a=2,b=13.14.解:原式=aa-b·a-bba+a-1b=1b+a-1b=ab.故当a=2,b=13时,原式=ab=2×3=6.15.先化简,再求值:a+3a·6a2+6a+9+2a-6a2-9,其中a=3-1.15.解:原式=a+3a·6(a+3)2+2(a-3)(a+3)(a-3)=6a(a+3)+2(a+3)=6+2aa(a+3)=2a.当a=3-1时,原式=23-1=3+1.16.先化简,再求值:x2+xx2-2x+1÷(2x-1-1x),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值.16.解:原式=x(x+1)(x-1)2÷[2xx(x-1)-x-1x(x-1)]=x(x+1)(x-1)2÷x+1x(x-1)=x(x+1)(x-1)2·x(x-1)x+1=x2x-1.当x=-1,0,1时,原分式均无意义.∴在-2<x≤2范围内选取整数2求值.此时原式=222-1=4.17.先化简,再求值:(1-2x-1)·x2-xx2-6x+9,其中x是从1,2,3中选取的一个合适的数.17.解:原式=x-1-2x-1·x(x-1)(x-3)2=x-3x-1·x(x-1)(x-3)2=xx-3.∵x-1≠0,x-3≠0,∴x≠1且x≠3,∴取x=2,∴原式=22-3=-2.18.先化简,再求代数式(2a+1-2a-3a2-1)÷1a+1的值,其中a=2sin60°+tan45°.18.解:原式=2(a-1)-(2a-3)(a+1)(a-1)·(a+1)=1(a+1)(a-1)·(a+1)=1a-1.∵a=2sin60°+tan45°=2×32+1=3+1,∴原式=13+1-1=33.19.先化简,再求值:(xx-3-1x-3)÷x2-1x2-6x+9,其中x满足2x+4=0.19.解:原式=x-1x-3·(x-3)2(x+1)(x-1)=x-3x+1,∵2x+4=0,∴x=-2,∴原式=-2-3-2+1=5.中考冲刺集训一、选择题1.计算x+1x-1x的结果为()A.1B.xC.1xD.x+2x2.下列运算结果为x-1的是()A.1-1xB.x2-1x·xx+1C.x+1x÷1x-1D.x2+2x+1x+13.化简a2-b2ab-ab-b2ab-a2等于()A.baB.abC.-baD.-ab二、填空题4.计算:xy2xy=________.5.若a=2b≠0,则a2-b2a2-ab的值为________.6.计算1-4a22a+1的结果是________.7.化简:(a2a-3+93-a)÷a+3a=________.三、解答题8.化简:m2-93m2-6m÷(1-1m-2).9.化简:x2+4x+4x2+2x÷(2x-4+x2x).10.先化简,再求值:a-4a÷(a+2a2-2a-a-1a2-4a+4),其中a=2.11.先化简,再求值:a2+aa2-2a+1÷(2a-1-1a),其中a是方程2x2+x-3=0的解.12.先化简(a2+4aa-2-42-a)·a-2a2-4,再从1,2,3中选取一个适当的数代入求值.13.先化简,再求值:x3-4xx2+4x+4÷(1-2x),其中x=2sin60°-1.14.先化简,再求值:(a+1a2-a-a-1a2-2a+1)÷a-1a,其中a=3+1.15.先化简,再求值:(1-2x)÷x2-4x+4x2-4-x+4x+2,其中x2+2x-15=0.16.先化简,再求值:(1x-y+2x2-xy)÷x+22x,其中实数x,y满足y=x-2-4-2x+1.17.化简:2xx+1-2x+4x2-1÷x+2x2-2x+1,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.答案与解析:1.A【解析】x+1x-1x=x+1-1x=xx=1.2.B【解析】逐项分析如下:选项逐项分析正误A1-1x=x-1x≠x-1×Bx2-1x·xx+1=(x+1)(x-1)x·xx+1=x-1√Cx+1x÷1x-1=x+1x·(x-1)=x2-1x≠x-1×Dx2+2x+1x+1=(x+1)2x+1=x+1≠x-1×3.B【解析】原式=(a+b)(a-b)ab-b(a-b)a(b-a)=(a+b)(a-b)ab+ba=(a+b)(a-b)+b2ab=a2-b2+b2ab=a2ab=ab,故答案为B.4.y【解析】先找出分式的分子、分母的公因式是xy,所以约分直接得到答案为y.5.32【解析】原式=(a+b)(a-b)a(a-b)=a+ba,∵a=2b≠0,∴原式=2b+b2b=32.6.1-2a【解析】原式=(1-2a)(1+2a)2a+1=1-2a.7.a【解析】原式=(a2a-3-9a-3)÷a+3a=a2-9a-3÷a+3a=(a+3)·aa+3=a.8.解:原式=(m-3)(m+3)3m(m-2)÷(m-2m-2-1m-2)=(m-3)(m+3)3m(m-2)·m-2m-3=m+33m.9.解:原式=(x+2)2x(x+2)÷2x2-4-x2x=(x+2)2x(x+2)·x(x+2)(x-2)=1x-2.10.解:原式=a-4a÷[a+2a(a-2)-a-1(a-2)2]=a-4a÷[(a+2)(a-2)a(a-2)2-a(a-1)a(a-2)2]=a-4a÷a2-4-a2+aa(a-2)2=a-4a·a(a-2)2a-4=a2-4a+4.当a=2时,原式=(2)2-4×2+4=6-42.11.解:原式=a(a+1)(a-1)2÷2a-(a-1)a(a-1)=a(a+1)(a-1)2·a(a-1)a+1=a2a-1.由2x2+x-3=0,得x1=1,x2=-32,又∵a-1≠0,∴a=-32.∴原式=(-32)2-32-1=-910.12.解:原式=a2+4a+4a-2·a-2a2-4=(a+2)2a-2·a-2(a+2)(a-2)=a+2a-2.由题意,a≠2,当a取1时,原式=a+2a-2=1+21-2=-3;当a取3时,原式=3+23-2=5.(任意一值代入均可得分)13.解:原式=x(x2-4)(x+2)2÷x-2x=x(x+2)(x-2)(x+2)2·xx-2=x2x+2.∵x=2sin60°-1=2×32-1=3-1,∴原式=(3-1)23-1+2=4-233+1=(4-23)(3-1)(3+1)(3-1)=63-102=33-5.14.解:原式=[a+1a(a-1)-a-1(a-1)2]·aa-1=[a+1a(a-1)-1a-1]·aa-1=1a(a-1)·aa-1=1(a-1)2.将a=3+1代入可得,原式=1(3+1-1)2=13.15.解:原式=x-2x÷(x-2)2(x+2)(x-2)-x+4x+2=x-2x·(x+2)(x-2)(x-2)2-x+4x+2=x+2x-x+4x+2=(x+2)2-x(x+4)x(x+2)=4x2+2x.∵x2+2x-15=0,∴x2+2x=15.(通过解方程得x值为-5,3也正确)∴原式=415.16.解:原式=[xx(x-y)+2x(x-y)]·2xx+2=x+2x(x-y)·2xx+2=2x-y,而x,y满足条件y=x-2-4-2x+1,∴被开方数x-2与4-2x都是非负数,∴x=2,y=1.把x=2、y=1分别代入化简后的式子,得2x-y=2.17.解:原式=2xx+1-2(x+2)(x+1)(x-1)·(x-1)2x+2=2xx+1-2x-2x+1=2x-2x+2x+1=2x+1.∵不等式x≤2的非负整数解是0,1,2,且当x=1时原分式无意义,∴x可取0或2,当x=0时,原式=2,当x=2时,原式=23.(任选一值代入均可得分)精诚