第九讲鸡兔同笼问题【基础概念】:鸡兔同笼问题也称置换问题:这类应用题常常把问题中的一个未知数假定为已知的,然后根据题目中的已知条件推算,其结果常与题目对应的已知数不符,再加以适当调整,就可以求出结果。此类应用题也称为假定法或比较法。基本数量关系式:(1)假设全是鸡,兔的只数=(总腿数-总头数×2)÷2,鸡的只数=总头数-兔的只数;(2)假设全是兔,鸡的只数=(4×总头数-总腿数)÷2,兔的只数=总头数-鸡的只数。【典型例题1】:鸡兔同关在一只笼里,共48个头,100只脚.问:鸡有多少只?兔有多少只?【思路分析】:假设全是兔子,那么就有48×4=192只脚,这就比已知的100只脚多出了192-100=92只脚,因为1只兔比1只鸡多4-2=2只脚,由此即可求得鸡的只数,进而求得兔的只数。解答:假设全是兔子,则鸡就有:(48×4-100)÷(4-2)=92÷2=46(只)则兔子有48-46=2(只)答:鸡有46只,兔子有2只。【小结】:解决这类问题关键是假设之后,多出脚数与对应的鸡的只数的关系。此题也可以这样解答:设兔有x只,那么鸡有(48-x)只,由等量关系:鸡和兔共有100只脚,可得方程:4x+2(48-x)=100,解答即可。【巩固练习】1、张洪正好用20元钱买了2元的邮票和5角的邮票,一共16张,问这两种邮票各有多少张?2、鸡兔同笼,鸡和兔的数量相同,两种动物的腿加起来共有168条,鸡和兔各有多少只?【典型例题2】:鸡兔同笼,鸡比兔多10只,但鸡脚却比兔脚少60只,问鸡兔各多少只?【思路分析】:设兔有x只,则鸡有(10+x)只,根据等量关系:兔的脚数-鸡的脚数60只列方程解答即可。解答:解:设兔有x只,则鸡有(10+x)只,4x-2(10+x)=604x-20-2x=602x=80x=4040+10=50(只)答:鸡有50只,兔有40只。【小结】:解决此类问题关键是找到等量关系:兔的脚数-鸡的脚数=60只,再根据等量关系列方程就可以了。【巩固练习】3、现在有相同只数的鸡、兔同笼,已知兔脚比鸡脚多56只,问鸡、兔各有多少只?4、鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只?答案及解析:1.【解析】假设全是2元的邮票,则一共用2×16=32元,比实际多用32-20=12元,因为5角=0.5元,一张2元的比一张0.5元的多用2-0.5=1.5元,所以5角的共有:12÷1.5=8张,进而用减法即可求出2元的邮票张数。【答案】5角=0.5元5角的有:(16×2-20)÷(2-0.5)=12÷1.5=8(张)2元的有:16-8=8(张)答:2元的有8张,5角的有8张。2.【解析】根据鸡和兔的数量相同,两种动物的腿加起来共有168条,可知本题的数量关系:鸡的腿数+兔的腿数=168,据此等量关系可列方程解答。【答案】解:设鸡有x只,根据题意得:2x+4x=1686x=168x=168÷6x=28答:鸡和兔各有28只。3.【解析】可以设鸡兔各有x只,根据兔的只数×4-鸡的只数×2=56条腿,列出方程就可以解决问题。【答案】:解:设鸡兔各有x只,根据题意可得方程:4x-2x=562x=56x=28答:鸡兔各有28只。4.【解析】假设60只都是鸡,没有兔,那么就有鸡脚120只,这样鸡脚比兔脚多120只,而实际上只多60只,这说明假设的鸡脚比兔脚多的数比实际上多120-60=60只,现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6只,而60÷6=10,因此有兔子10只,鸡60-10=50只。【答案】:兔子:(60×2-60)÷(4+2)=60÷6=10(只)鸡:60-10=50(只)答:兔子有10只,鸡有50只。