2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):中国人民解放军理工大学参赛队员(打印并签名):1.韦炜致2.盛俊3.秦鹏飞指导教师或指导教师组负责人(打印并签名):刘守生(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)日期:2014年7月21日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):-1-通过曲线拟合的方法探究两个相关量之间的关系一、摘要本文采用最小二乘法、最小一乘法的分析方法,通过建立线性规划模型与非线性规划模型等多种形式,利用Matlab、Lingo编程实现曲线拟合,以探究两个相关量y量与x量之间的关系。对于问题一,在拟合准则为偏差平方和最小的前提下,采用最小二乘法,通过Matlab编程得到a0.012,b0.803,即可得拟合直线0.8030.012yx。对于问题二,在拟合准则为绝对偏差总和最小的前提下,采用最小一乘法,并将无约束不可微最优化问题转化为解决线性规划问题,通过Matlab编程得到a0.750,b0.575,即可得拟合直线0.5750.750yx。对于问题三,在拟合准则为最大偏差极小化的前提下,采用线性规划模型,通过Matlab编程得到a-4.758,b1.130,即得拟合直线1.1304.758yx。对于问题四,在拟合准则为偏差平方和最小的前提下,继续采用最小二乘法,得到a1.425,b-0.139,c0.097,则20.0970.1391.425yxx为所拟合的曲线。在拟合准则为绝对偏差总和最小的前提下,构造非线性规划模型,得到a1.000,b-0.805,c0.160,则20.1600.8051.000yx为所拟合的曲线。在拟合准则为最大偏差极小化的前提下,也是构造非线性规划模型,得到a0.469,b0.766,c0.025,则20.0250.7660.469yxx为所拟合的曲线。对于问题五,重新观察散点图的图像特征,采用最小二乘法,拟合出相应的指数函数曲线图像和对数函数曲线图像,发现0.9430.240xy的指数函数曲线方程较对数函数曲线方程2.566ln0.809yx更准确地表现出y量与x量之间的关系。关键词最小二乘法最小一乘法线性规划曲线拟合-2-二、问题重述已知一个量y依赖于另一个量x,现收集有数据如下:x0.00.51.01.51.92.53.03.54.04.5y1.00.90.71.52.02.43.22.02.73.5x5.05.56.06.67.67.68.59.010.0y1.04.07.62.75.74.66.06.812.3(1)求拟合以上数据的直线abxy。目标为使y的各个观察值同按直线关系所预期的值的偏差平方和为最小。(2)求拟合以上数据的直线abxy,目标为使y的各个观察值同按直线关系所预期的值的绝对偏差总和为最小。(3)求拟合以上数据的直线,目标为使y的各个观察值同按直线关系所预期的值的最大偏差为最小。(4)求拟合以上数据的曲线abxcxy2,实现(1)(2)(3)三种目标。(5)试一试其它的曲线,可否找出最好的?三、问题分析由题目可知,y量依赖于x量,也就是说y量与x量之间存在着必然的联系。这就要求我们通过曲线拟合的方式来探究y量与x量之间的关系。对于问题一,拟合题中所给数据的直线abxy,目标为使y的各个观察值同按直线关系所预期的值的偏差平方和为最小。拟合准则偏差平方和最小,即为最为常用的最小二乘准则,故该问就转化为了在最小二乘准则下的曲线拟合问题,也就是一个多元函数的最小值问题,故而可采用最小二乘法,利用Matlab编程进行曲线拟合进行求解。对于问题二,拟合题中所给数据的直线abxy,目标为使y的各个观察值同按直线关系所预期的值的绝对偏差总和为最小。对于要在拟合准则绝对偏差总和最小的情况下拟合曲线,应采用最小一乘法原理,又因求解存在一定的困难,其困难就在于绝对值的存在,应设法化去绝对值,所以在所要求拟合的曲线函数形式简单的前提下,将问题转化为了线性规划的求解问题。对于问题三,拟合题中所给数据的直线abxy,目标为使y的各个观察值同按直线关系所预期的值的最大偏差为最小。对于要在拟合准则最大偏差为最小的情况下拟合曲线,可以在第二问的基础上加以改进,继续采用线性规划模型,并利用Lingo编程进行问题的求解。对于问题四,拟合题中所给数据的曲线abxcxy2,分别实现问题一、问题二、问题三中的三种目标。针对这一问题,只需将前三问中的原理加以改进,将原理中的线性部分转化为非线性部分,即可对该问进行求解。对于问题五,因为前三问要求拟合的都是直线,第四问要求拟合的是二次曲线,拟合完后发现均呈现函数值与观测值都存在一定的偏差,说明拟合的曲线并非是关于y量和x量的最佳拟合曲线。故而可以重新观察散点图的图像特点,充分考虑之前拟合-3-曲线中的奇异点的位置,分别尝试拟合指数函数曲线和对数函数曲线,以找到关于y量和x量的最佳拟合曲线。四、模型的建立与求解设1,2,ixin表示按拟合曲线yx求得的近似值,它不同于实测值iy,两者之间的差值iiiexy就是大家熟知的偏差(或残差)。通常我们构造拟合曲线有3种准则可供选择(即如题所问),具体内容如下:1、最大偏差达到最小:maxminie;2、偏差的绝对值之和达到最小:1minniie;3、偏差的平方和达到最小:21minniie。6.1问题I模型的建立和解答6.1.1问题I模型的建立直线拟合数据点,1,2,iixyin的最小二乘法,即找一个一次函数ybxa,使二元函数21,niiiEbaAxBy达到最小。由多元函数取得极值的必要条件知,由方程组:11,20,20niiiiniiiEbaxyxbEbaxya,化简可得正规方程组:211111nnniiiiiiinniiiibxaxxybxnay。6.1.2问题I模型的解答要求解最小二乘线性回归方程,运用Matlab实现极为简洁(具体程序详见附录1)。得出b0.803,a-0.012。也就是说拟合成的直线为0.8030.012yx。-4-拟合后的图像见下图1:4.2问题II模型的建立和解答4.2.1建立最小一乘线性回归模型设观测数据为npXRnp,即样本个数大于变量个数,1nyR,线性模型为1,yX,(1)其中1nR为元素全为1的n维列向量,1pR为回归系数向量,20,NI。接下来是确定对最小一乘线性回归系数的估计,这就需要求解下面的无约束不可微最优化问题111,minpRyX,(2)即要求超定矛盾线性方程组1,Xy,(3)的1l的范数极小解。令1,AX,by,可以看做两个非负的1p维列向量,uv之差,令uv,又设,为非负的n维列向量,则(3)可以变成一个相容性的线性方程。Auvb。(4)问题(2)变为求1最小的问题,再设1,01pn分别表示含有1p个0,n个1的列向量,于是问题转化为求解如下的线性规划问题模型目标值为11min0,0,1,1,,,TTTTTTTTTppnnuv,(5)约束条件为,,,,,,,,,0TTTTTAAIIuvbuv,(6)图1问题一函数拟合结果-5-接着利用求解线性规划的算法,求出问题(5)的最优解,,,TTTTTuv后,即可得到问题(1)的最优解uv。4.2.2求解最小一乘线性回归模型要求解最小一乘线性回归方程,关键就是计算出最小一乘线性回归系数向量,而计算值运用Matlab实现极为简洁。故下面就利用Matlab优化工具箱中的线性规划命令linprog求解最小一乘线性回归系数向量(具体程序详见附录1)。得出0.5750,0.6500,即b0.575,a0.750。也就是说拟合成的直线为0.5750.750yx。拟合后的图像见下图2:4.3问题III模型的建立和解答4.3.1问题III模型的建立问题三归结为求直线abxy。目标为使y的各个观察值iy同按直线关系所预期的值ibxa的最大偏差iiiybxa为最小(即最大偏差极小化)。则对于任意的i,令102iiiu102iiiv那么,iiiuviiiuv可建立线性规划模型如下:miniiiuv图2问题二函数拟合结果-6-iiiiiiybxauv4.3.2问题III模型的解答要求解上述线性规划的方程,运用Lingo实现极为简洁(具体程序详见附录2)。得出b1.130,a-4.758。也就是说拟合成的直线为1.1304.758yx。拟合后的图像如图3:4.4问题IV模型的建立和解答问题四归结为求非线性曲线abxcxy2,其要求分别从问题一、问题二、问题三的拟合准则出发进行求解,故而可继续采用前三问中的原理,将线性部分的约束条件转变为非线性下的约束条件即可对该问进行求解。4.4.1针对问题I中的拟合准则求解问题IV对于拟合准则为偏差平方和最小,采用最小二乘法,用Matlab编程(详见附录1)得出a1.425,b-0.139,c0.097,即可得出拟合的函数曲线方程为20.0970.1390.097yxx,拟合后的图像如下图4:图3问题三函数拟合结果图4问题四(1)函数拟合结果-7-4.4.2针对问题II中的拟合准则求解问题IV对于拟合准则为绝对偏差总和最小,通过建立如下非线性规划模型191911minminiiiiiuv,22iiiiiiiycxbxauv,和利用Matlab编程(详见附录1)得出a1.000,b-0.805,c0.1601,即可得出拟合的函数曲线方程为20.1600.8051.000yx。拟合后的图像如下图5:4.4.3针对问题III中的拟合准则求解问题IV对于拟合准则为绝对偏差总和最小,通过非线性规划模型miniiiuv,22iiiiiiiycxbxauv,和利用Lingo编程(详见附录2)得出a0.025,b-0.766,c0.469,即可得出拟合的函数曲线方程为2