动量守恒定律复习课教材

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

动量守恒定律的应用定律内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。动量守恒定律的表达式:知识回顾——动量守恒的条件1、系统不受外力(理想化)或系统所受合外力为零。2、系统受外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来要小得多,且作用时间极短,可以忽略不计。3、系统所受外力的合力虽不为零,但在某个方向上所受合外力为零,则系统在这个方向上动量守恒。知识回顾动量守恒定律的三性:矢量性参考系的同一性整体性普适性4、确定系统动量在研究过程中是否守恒?1、明确研究对象:将要发生相互作用的物体可视为系统2、进行受力分析,运动过程分析:系统内作用的过程也是动量在系统内发生转移的过程。3、明确始末状态:一般来说,系统内的物体将要发生相互作用,和相互作用结束,即为作用过程的始末状态。5、选定正方向,列动量守恒方程及相应辅助方程,求解做答。应用动量守恒定律的一般步骤几种常见模型:1.碰撞模型2.子弹打木块模型3.人船模型4.某一方向动量守恒5.多个物体动量守恒6.动量与能量的综合应用碰撞模型一、碰撞1.两个具有相对运动的宏观物体或微观粒子在很短时间内的相互作用过程称为碰撞。2.微观粒子的碰撞一般不会发生直接接触所以又称为散射。3.由于物体间相互作用时间很短,相互作用的冲力很大,系统所受的外力可以忽略。所以碰撞过程满足动量守恒。4.按碰撞前后速度方向区分,碰撞有正碰(对心碰撞)与斜碰两种;按碰撞前后机械能有无损失区分,碰撞有弹性碰撞和非弹性碰撞之分。1、如图所示,A、B两物体的质量比mA∶mB=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面水平光滑,突然释放弹簧后,则有()A、A、BB、A、B、C系统动量守恒C、小车向左运动D、小车向右运动BC课堂练习碰撞问题的典型应用相互作用的两个物体在很多情况下,皆可当作碰撞处理,那么对相互作用中两个物体相距恰“最近”、相距恰“最远”或恰上升到“最高点”等一类临界问题,求解的关键都是“速度相等”。(1)光滑水平面上的A物体以速度V0去撞击静止的B物体,A、B物体相距最近时,两物体速度必相等(此时弹簧最短,其压缩量最大)。2、质量均为2kg的物体A、B,在B物体上固定一轻弹簧,则A以速度6m/s碰上弹簧并和速度为3m/s的B相碰,则碰撞中AB相距最近时AB的速度为多少?弹簧获得的最大弹性势能为多少?课堂练习(2)物体A以速度V0滑到静止在光滑水平面上的小车B上,当A在B上滑行的距离最远时,A、B相对静止,A、B两物体的速度必相等。ABV03、质量为M的木板静止在光滑的水平面上,一质量为m的木块(可视为质点)以初速度V0向右滑上木板,木板与木块间的动摩擦因数为μ,求:木板的最大速度?mMV0课堂练习(3)质量为M的滑块静止在光滑水平面上,滑块的光滑弧面底部与桌面相切,一质量为M的小球以速度V0向滑块滚来,设小球不能越过滑块,则小球到达滑块上的最高点时(即小球的竖直向上速度为零),两物体的速度肯定相等。4、如图所示,质量为M的滑块静止在光滑的水平桌面上,滑块的光滑弧面底部与桌面相切,一个质量为m的小球以速度v0向滑块滚来,设小球不能越过滑块,则小球到达最高点时,小球与滑块的速度各是多少?课堂练习5.(2016年日照市物理一模)如图所示,质量分别为1kg、3kg的滑块A、B位于光滑水平面上,现使滑块A以4m/s的速度向右运动,与左侧连有轻弹簧的滑块B发生碰撞.在二者在发生碰撞的过程中,求:(1)弹簧的最大弹性势能;(2)滑块B的最大速度.【考点】动量守恒定律;机械能守恒定律.【专题】动量与动能定理或能的转化与守恒定律综合.【分析】(1)A与B相互作用过程中,外力的合力为零,系统动量守恒,同时由于只有弹簧弹力做功,系统机械能也守恒;A刚与弹簧接触时,弹簧弹力逐渐变大,A做加速度变大的加速运动,B做加速度变大的加速运动,当A与B速度相等时,弹簧最短,弹性势能最大,根据动量守恒定律和机械能守恒定律列式即可.(2)当A、B分离时,B的速度最大,此时相当进行了一次弹性碰撞.由动量守恒定律与机械能守恒定律即可求解.【解答】解:(1)在整个过程中,弹簧具有最大弹性势能时,A和B的速度相同.选取向右为正方向,根据动量守恒定律:mv0=(M+m)v.根据机械能守恒定律,有:由①②得EP=6J(2)当A、B分离时,B的速度最大,此时相当进行了一次弹性碰撞,则:mAv0=mAvA+mBvB由以上两式得【点评】本题关键对两物体的受力情况和运动情况进行分析,得出A和B的速度相同时,弹簧最短,然后根据动量守恒定律和机械能守恒定律列式求解.碰撞问题的典型应用相互作用的两个物体在很多情况下,皆可当作碰撞处理,那么对相互作用中两个物体相距恰“最近”、相距恰“最远”或恰上升到“最高点”等一类临界问题,求解的关键都是“速度相等”。动量守恒定律的典型应用1.子弹打木块类的问题:摩擦力(阻力)与相对位移的乘积等于系统机械能(动能)的减少。如图所示,质量为M的木块放在光滑水平面上,质量为m的子弹以速度v0沿水平方向射中木块,并最终留在木块中与木块一起以速度v运动。已知当子弹相对木块静止时木块前进的距离为L,若木块对子弹的阻力f视为恒定,求子弹进入木块深度s物理过程分析SaSbSab例8:质量为m、速度为v0的子弹,水平打进质量为M、静止在光滑水平面上的木块中,并留在木块里,求:(1)木块运动的速度多大?(2)若子弹射入木块的深度为d,子弹对木块的作用力?v0vSS+d如图所示的装置中,木块B与水平桌面间的接触是光的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。现将子弹木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中()A.动量守恒C.动量先守恒后不守恒B.机械能守恒D.机械能先守恒后不守恒答案:C例2:如图,在光滑的水平台子上静止着一块长50cm质量为1kg的木板,另有一块质量为1kg的铜块,铜块的底面边长较小,相对于50cm的板长可略去不计。在某一时刻,铜块以3m/s的瞬时速度滑上木板,问铜块和木板间的动摩擦因数至少是多大铜块才不会从板的右端滑落?(设平台足够长,木板在这段时间内不会掉落)(g取10m/s2)解答:选向右为正方向,铜块在木板上滑动时木块与铜块组成系统的动量守恒,mv0=(M+m)vv=1.5m/s根据能量守恒:例3:在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间的距离大于L(L比2r大的多)时,两球间无相互作用力,当两球心距离等于或小于L时两球间有恒定斥力F,设A球从较远处以初速V0正对静止的B球开始运动(如图)于是两球不发生接触。则V0必须满足什么条件?解答:当两球恰好靠近又不发生接触时,最后两球的速度相等,由动量守恒:mv0=3mvv=v0/3由能量守恒:2.人船模型(二)、人船模型例5:静止在水面上的小船长为L,质量为M,在船的最右端站有一质量为m的人,不计水的阻力,当人从最右端走到最左端的过程中,小船移动的距离是多大?SL-S0=MS–m(L-S)例6:静止在水面上的小船长为L,质量为M,在船的两端分别站有质量为m1、m2的两人,不计水的阻力,当两人在船上交换位置的过程中,小船移动的距离是多大?m1m2SL-SL+S例7:载人气球原静止在高度为H的高空,气球的质量为M,人的质量为m,现人要沿气球上的软绳梯滑至地面,则绳梯至少要多长?HSH答案:(M+m)h/M。例:一个质量为M,底面长为b的三角形劈静止于光滑的水平桌面上,如图所示,有一质量为m的小球由斜面顶部无初速滑到底部时,劈移动的距离为多大?mMb解:劈和小球组成的系统在整个运动过程中都不受水平方向外力,所以系统在水平方向平均动量守恒,劈和小球在整个过程中发生的水平位移如图所示,由图见劈的位移为s,小球的水平位移为x,xsbmM则由平均动量守恒得:MS=mxS+x=b∴S=mb/(M+m)3.某一方向动量守恒例题:某炮车的质量为M,炮弹的质量为m,炮弹射出炮口时相对于地面的速度为v,设炮车最初静止在地面上,若不计地面对炮车的摩擦力,炮车水平发射炮弹时炮车的速度为。若炮身的仰角为α,则炮身后退的速度为。解:将炮弹和炮身看成一个系统,在水平方向不受外力的作用,水平方向动量守恒。所以:0=mv-MV1∴V1=mv/M0=mvcosθ-MV2∴V2=mvcosθ/M4.动量守恒定律与归纳法专题:例:人和冰车的总质量为M,另有一木球,质量为m.M:m=31:2,人坐在静止于水平冰面的冰车上,以速度v(相对于地面)将原来静止的木球沿冰面推向正前方的固定挡板,球与冰面、车与冰面的摩擦及空气阻力均可忽略不计,设球与挡板碰撞后,反弹速率与碰撞前速率相等,人接住球后再以同样的速度(相对于地面)将球沿冰面向正前方推向挡板,求人推多少次后才能不再接到球?解:人在推球的过程中动量守恒,只要人往后退的速度小于球回来的速度,人就会继续推,直到人后退的速度跟球的速度相等或者比球回来的速度小。设向右为正方向。则:vv第1次推时:第2次推时:第3次推时:…第n次推时:…把等式的两边分别相加就会得到:要想不接到球,Vn=v所以:当推了8次,球回来时,人的速度还达不到v,因此人需要推9次。5.三个以上的物体组成的系统例1:在光滑水平面上有一质量m1=20kg的小车,通过一根不可伸长的轻绳与另一质量为m2=5kg的拖车相连接,拖车的平板上放一质量为m3=15kg的物体,物体与平板间的动摩擦因数为μ=0.2.开始时拖车静止,绳没有拉紧,如图所示,当小车以v0=3m/s的速度前进后,带动拖车运动,且物体不会滑下拖车,求:(1)m1、m2、m3最终的运动速度;(2)物体在拖车的平板上滑动的距离。解析:在水平方向上,由于整个系统在运动过程中不受外力作用,故m1、m2、m3所组成的系统动量守恒,最终三者的速度相同(设为v)则m1v0m3m2欲求m3在m2上的位移,需知m1与m2作用后m2的速度,当m1与m2作用时,m3通过摩擦力与m2作用,只有m2获得速度后m3才与m2作用,因此在m1与m2作用时,可以不考虑m3的作用,故m1和m2组成的系统动量也守恒。m3在m2上移动的距离为L,以三物体为系统,由功能关系可得例题2、如图在光滑的水平面上,有两个并列放置的木块A和B,已知mA=500g,mB=300g,有一质量为80g的铜块C以25m/s水平初速度开始在A表面上滑行,由于C与A和B之间有摩擦,铜块C最终停在B上,与B一起以2.5m/s的速度共同前进,求:(1)木块A的最后速度(2)C离开A时的速度ABCV0例3:如图物体A的质量为2千克,物体B的质量为3千克,物体C的质量为1千克,物体A、B、C放在光滑的水平面上,B、C均静止,物体A以速度12m/s水平向右运动,与B相碰,碰撞时间极短且碰后A、B接为一体,最终A、B、C一起运动(A、B足够长)试求C相对A、B的位移ABCV6、弹簧类问题【例1】在原子物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”.这类反应的前半部分过程和下述力学模型类似.两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态.在它们左边有一垂直于轨道的固定档板P,右边有一个球C沿轨道以速度v0射向B球,如图5-3-3所示,C与B发生碰撞并立即结成一个整体D.在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变.然后,A球与档板P发生碰撞,碰后A、D都静止不动,A与P接触而不黏连.过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失).已知A、B、C三球的质量均为m.(1)求弹簧长度刚被锁定后A球的速度;(2)求在A球离开挡板P的运动过程中,弹簧的最大弹性势能.【解析】(1)设C球与B球黏结成D时,D的速度为v1,由动量守恒,有mv0=(m+m)v1①当弹簧压至最短时,D与A的速度相等,设此速度

1 / 74
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功