蒲城县党睦中学活页教案专用笺首页教学过程导入新课常言说“物以类聚,人以群分”,任何一个生物都不可能单独生活,它必然要与周围同种的很多个体生活在一起——这就是种群。在自然界中,生物的种类有数百万种之多,一个种群能够单独生存于世吗?它与周围的其他种群生物之间存在什么关系呢?这些生物如果在一起,又构成了怎样的一个群体?进行新课(一)生物群落课件:一个池塘生态系统图片思考并讨论:①这个池塘中至少有多少个种群?②假如池塘中的肉食性鱼大量减少,池塘中其他种群的数量会出现什么变化?交流并总结:池塘中有肉食性鱼、植食性鱼、浮游动物、浮游植物、微生物等生物,他们之间有着相互作用的关系。精讲点拨:在自然界中,任何一个生物种群都不是单独存在的,而是与其他种群紧密联系在一起的,彼此之间有着直接或间接的联系。生态学上把在同一时间内、占有一定空间的相互之间有直接或间接的联系的各种生物种群的集合,叫做群落。下列实例中不能构成群落的是A.一个池塘中所有的生物B.无菌培养基被污染后长出的许多菌落C.亚马孙河谷的热带雨林D.一个池塘里全部的鱼和虾学生总结:群落由一定的动物、植物和微生物构成。群落是占有一定空间的多种生物种群的集合体。物种丰富度一个群落中物种的多少和每个种群的个体数量,是群落多样性的基础,即指一个群落或生态系统中物种数目的多少。D=ASln(二)生物群落中的中间关系(1)种间竞争种间竞争可以分为资源利用性竞争和相互干涉性竞争两类。在资源利用性竞争中,两种生物之间没有直接干涉,只有因资源总量减少而产生对竞争对手的存活、生殖和生长的间接影响。例如,两种达尔文雀(勇地雀和仙人掌地雀)之间的竞争。在加拉帕戈斯群岛的小岛上,20世纪70年代晚期有一次干旱大幅度降低了种子(两种雀的食物)的产量,两种雀都在干旱中存活了下来,但食物改变了,勇地雀集中去采食小的仙人掌种子,而仙人掌地雀选择较大的种子。相互干涉性竞争也很常见。例如,某些植物能分泌一些有害物质,阻止别种植物在其周围生长。(2)捕食对捕食的理解,有广义和狭义两种。广义的捕食包括以下几类:典型捕食,指食肉动物吃食草动物或其他动物,如狮吃斑马,猫吃老鼠(狭义的捕食就是指这一类);食草,指食草动物采食绿色植物,如羊吃草,在这种关系中,植物不一定全部被吃掉;寄生,指寄生物从宿主获得营养,一般不杀死宿主。(3)偏利共生两个不同物种个体之间发生的一种对一方有利的现象称为偏利共生。例如,附生植物与被附生植物之间的关系就是一种典型的偏利共生。附生植物如地衣、苔藓等借助于被附生植物支撑自己,可获得更多的光照和空间资源。几种高度特化的鱼类,其头顶的前背鳍转化为卵形吸盘,借以牢固地吸附在鲨鱼和其他大型鱼类的身上,随之移动并获取食物,也是偏利共生的典型例子。(三).群落空间结构(1)群落的垂直结构大多数群落的内部都有垂直分化现象,即成层现象。以陆生群落为例,成层现象包括地面以上的层次和地面以下的分层。层的数目依群落类型不同有很大变动。森林的层次比草原的层次多,表现也最清楚。大多数温带森林至少有3~4层,最上层是由高大的树种构成乔木层,之下有灌木层、草本层,以及由苔藓与地衣构成的地被层。在地面以下,由于各种植物根系所穿越的土壤深度不同,形成了与地上层相应的地下层。热带雨林的种类成分十分复杂,群落的层数最多。多数农田植物群落仅有一个层次。正如群落中植物有分层现象一样,各种动物也因生态位不同而占据着不同的层。例如,鸟类经常只在一定高度的林层做巢和取食。在我国珠穆朗玛峰的河谷森林里,白翅拟腊嘴雀总是成群地在森林的最上层活动,吃食大量的滇藏方枝柏的种子;而血雉和棕尾虹雉是典型的森林底层鸟类,吃食地面的苔藓和昆虫;煤山雀、黄腰柳莺则喜欢在森林中层做巢。在水域生态系统中,垂直分布也是很明显的。藻类总是分布在阳光能够照射或透过的水体上层;浮游动物生活在植物能延伸到的地区,而且能够在较深的水域活动;软体动物、环节动物和蟹类则生活在水体的底层。不同鱼类也常分布在不同层次上,这些动物的垂直分布都与水体的物理条件(温度、盐度和氧气含量等)和生物条件(食物、天敌等)有密切关系。群落成层现象的出现使生物群落在单位面积上能容纳更多的生物种类和数量,能最充分地利用空间和营养物质,产生更多的生物物质。农业生产中的间作、套种和“多层楼”等,就是人们模拟天然植物群落的成层性,在生产实践中的一种创造性的应用。(2)群落的水平结构群落的水平结构主要表现特征是镶嵌性。镶嵌性表明植物种类在水平方向上的不均匀配置,它使群落在外形上表现为斑块相间的现象,具有这种特征的群落叫做镶嵌群落。在镶嵌群落中,每一个斑块就是一个小群落,小群落具有一定的种类成分和生活型组成,它们是整个群落的一小部分。例如,在森林中,林下阴暗的地点有一些植物种类形成小型组合,而在林下较明亮的地点是另外一些植物种类形成的组合。这些小型的植物组合就是小群落。内蒙古草原上锦鸡儿灌丛化草原是镶嵌群落的典型例子。在这些群落中往往形成1~5m左右的锦鸡儿灌丛,呈圆形或半圆形的丘阜。这些锦鸡儿小群落内部由于聚集细土、枯枝落叶,具有良好的水分和养分条件,形成一个局部优越的小环境。小群落内部的植物较周围环境中的返青早,生长发育好,有时还可以遇到一些越带分布的植物。群落镶嵌性形成的原因,主要是群落内部环境因子的不均匀性,例如,小地形和微地形的变化、土壤温度和盐渍化程度的差异、光照的强弱以及人与动物的影响。人为的干扰,诸如过度放牧、粗放开垦等能破坏地表的植被,增加地表的蒸发,加快土壤盐分向地表聚积的速度,导致地表土壤的含盐量逐渐增加,使一些耐盐碱植物生活良好,而其他植物逐渐死亡,形成碱斑裸地,在景观上体现镶嵌性或植物的斑块分布。由于存在不大的低地和高地而发生环境的改变形成镶嵌,这是环境因子的不均匀性引起镶嵌性的例子。由于土壤中动物的活动,像因田鼠活动而在田鼠穴附近经常形成不同于周围植被的斑块,这是动物影响镶嵌性的例子。拓展1:猞猁和雪兔的经典研究加拿大哈德逊湾公司从18世纪中叶开始就成为北美洲惟一的皮毛商业中心,它保存了多年的皮毛收购统计资料。英国生态学家埃尔顿(Elton)从1924年起,就利用该公司的资料进行研究,提出种群周期性波动的学说。在哺乳类中,常存在9~10年或3~4年的周期性。经典的例子是猞猁和雪兔的9~10年周期波动。教科书73页的图是根据哈德逊湾公司记录分析的结果。可以看出,猞猁以雪兔为食,当雪兔数量增加时,猞猁食物充足,数量也就不断增加;但当猞猁数量过多时,雪兔数量急剧下降,猞猁会因食物缺乏而饥饿或病死,造成数量下降;同时,这也给雪兔提供了一个繁衍恢复的机会。雪兔的数量增多了,猞猁又随之增多。通过这种捕食关系,使雪兔和猞猁的数量都出现了周期性的波动。应当注意,除猞猁对雪兔的影响外,雪兔还受到许多其他因素的影响,如雪兔所吃的植物也影响这个周期。当雪兔数量增加时,植物叶组织的质量变差,数量降低,当降低到不足以养活雪兔种群时,雪兔与其食料之间的相互关系就会成为决定种群动态的关键因素。植物食料减少,引起食物缺乏,这就会降低雪兔的生殖潜力。雪兔数量的减少将导致捕食动物(猞猁)和雪兔之间的比例失调,从而强化了捕食作用。因此雪兔—猞猁种群的周期最好认为是3个组分相互作用的结果:植物、雪兔和猞猁。当然,这个例子表明的不只是种群数量的周期性变动情况,还说明猞猁数量的周期性变化是在雪兔周期性变化之后。换言之,由于猞猁种群密度的增加而产生的降低本种群增长率的效应,并不能即时发生作用,而是要经过一定时间才能显现出来,猞猁数量变动周期较雪兔晚了1年。拓展2:城市立体绿化城市立体绿化是指利用城市地面以上的各种不同条件,选择各类适宜的植物,栽植于人工创造的环境中,使绿色植物覆盖地面以上的各类建筑物和构筑物的表面,增加城市的绿化面积,改善城市的生态环境和居民的生活环境。它的主要形式有墙体绿化、阳台绿化、架廓绿化、篱笆与栅栏绿化、屋顶绿化(屋顶花园)、室内绿化等。一些先进国家提倡建筑与环境之间要成为一个有机统一体,实施建筑形体与自然配合,即“与环境共生”的生态建筑,其中立体绿化就成为重要的指标之一。如用绿色植物把屋顶、墙面、阳台、平台、立交桥、高架线的柱和边沿等都包装起来,不但补偿了因建筑占用的绿地,更能取得良好的环境效果。城市立体绿化的鼻祖是公元前5世纪的古巴比伦国王尼布甲尼撒,他为王后修建的“空中花园”,是人类历史上最早的立体绿化。1959年美国已考虑到屋顶绿化的独特作用,在加州奥克兰市6层车库建了1.2hm2的屋顶花园,被视为建筑与园林艺术“杂交”的奇葩。1977年在加拿大温哥华18层办公楼上,采用轻型多孔材料,造成盆景式的空中花园。在德国,1990年已有绿化屋顶9×106m2,仅汉诺威市用屋顶绿化法就复活了50%的绿地。巴西的库的里提巴市圣都蒙特广场周围,虽然大厦林立,但由于墙面和屋顶绿草如茵,四季尘土不扬,炎夏凉爽舒适。法国巴黎、英国伦敦一幢幢高楼平顶上栽种各种树木与花草,美不胜收。摩纳哥首都摩纳哥城的居民住宅不仅窗口、阳台,就连屋顶也种了各种植物,处处有精巧、别致的屋顶花园映入眼帘。香港也十分重视见缝插绿,新区屯门28层高楼屋顶就有花园27×104m2。新加坡、吉隆坡等城市的过街天桥、桥体和多层停车场,花木扶疏、绿茵如毯,阳台、平台和屋顶花团锦簇。绿化名城南京市近年实施立体绿化,在市内各主次干道沿街的墙体、围栏、屋顶、廊柱、河岸等处广植垂直绿化苗木,给街道建筑穿上绿装。仅2004年春季以来,全市就栽种垂直绿化苗木50多万株、建成立体绿化带总计50多公里,引种的藤本植物有爬山虎、金银花、凌霄、紫藤、常春藤、扶芳藤、木香、藤本月季等10多个品种,其营造的“绿墙绿房绿柱廊”的城市立体绿化空间,不仅使环境更加美丽,还将给市民度夏带来更多阴凉。四作业