中国海洋大学寿险精算讲义5

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第五章净责任准备金netpremiumreserves本章结构净责任准备金(受益责任准备金)(netpremiumreserves)净责任准备金的定义和原理(definitionandprincipleofnetpremiumreserves)用前瞻法确定常见险种的净责任准备金(useprospectiveformulatoevaluatenetpremiumreserves)净责任准备金的其他公式(otherformulasfornetpremiumreserves)完全离散场合责任准备金的递推公式(recursionformulasforfullydiscretereserves)半连续责任准备金的确定(reservesonasemi-continuousbasis)一年缴费若干次责任准备金的确定(reservesbasedontruemthlypremiums)分数期责任准备金的确定(reservesatfractionaldurations)责任准备金的计算基数(reservesformulasintermsofcommutationfunction)修正责任准备金(modifiedreserves)本章中英文单词对照净责任准备金(受益责任准备金)前瞻亏损保费差公式缴清保费公式过去法公式未来法公式Netpremiumreserve(Benefitreserves)ProspectivelossPremium-differenceformulaPaid-upinsuranceformulaRetrospectiveformulaProspectiveformula1、责任准备金产生的原因0t未来责任未来收入w未来责任未来收入差值责任准备金1、责任准备金产生原因净保费厘定原则:净均衡原则,保证了以保单发行日为参照点保险公司的未来保费收入现时值和未来保险赔付的现时值相等(atthedateofpolicyissue,thereisequivalencebetweentwoacturialpresentvalue,thatis,equivalencebetweenfuturebenefitacturialpresentvalueandfuturenetpremiumsacturialpresentvalue,PVFB=PVFP)。但除了保单发行日以外,以保障期内任意某个时刻为参照点,未来收支的现时值都有可能不平衡。(afteraperiodoftime,however,therewillnolongerbeanequivalencebetweenthetwoacturialpresentvalue,fortheinsurer,usuallyPVFBPVFP)2、净责任准备金的定义和原理定义:保险公司在任意时刻对每个仍在保障范围内的被保险人的未尽责任现时值,就称为净责任准备金。实质责任准备金是现存被保险人未来受益与未来缴费现时值之差(netpremiumreservesarethedifferencebetweenthetwoactuarialpresentvalue,thisisaliabilitythatshouldberecognizedinanyfinancialstatementofaninsurer,itisalsoanassetfortheinsured)3、责任准备金图解0t未来责任未来收入w未来责任未来收入差值责任准备金仍在保障范围内的被保险人数差值责任准备金对每位仍在保障范围内的被保险人的未尽责任现值==4、责任准备金的分类按覆盖责任分:净责任准备金(受益责任准备金)(netpremiumreserves)费用责任准备金(expensereserves)修正责任准备金(modifiedreserves)按被保险人缴费、保险人赔付的方式分:完全连续责任准备金(死亡即刻赔付,连续缴费)完全离散责任准备金(死亡年末赔付,生存期初缴费)半连续责任准备金(死亡即刻赔付,生存期初缴费)5、用前瞻法确定净责任准备金(以终身寿险为例)前瞻亏损(prospectiveloss)其中UtULvpa(完全连续)()0uxtxtuUtfupu是保单签发年后被保险人的剩余寿命5、用前瞻法确定净责任准备金(以完全连续终身寿险为例)前瞻亏损的期望即该时刻的净责任准备金(前瞻亏损的期望也就是未来责任精算现值与未来收入精算现值之差)用这种原理确定责任准备金的方法称为前瞻方法()[][][]()UtxtUxtxtVAELEvPEaAPa前瞻法公式、未来法公式6、前瞻亏损现值方差的计算2222222()()()(1)()()[][(1)]()(1)()()(1)()(1)uuxxtxuuxxtuxxxtxtxtxtxPAPALvPAavPAPAVarLVarvPAVarvPAAAAAA例5.1已知:利用前瞻方法确定完全连续终身寿险在未来任意时刻t的净责任准备金及前瞻损失的方差0.04,0.06例5.1答案22220.04,0.060.4,0.25,10,()0.040.4,10()()0()()10.25xxxxxtxxtxtxxtxxtxtxtxtAAaPAAAaaVAAPAaPAVarLAA例5.2已知利率按6%计算求:100,0100xlxx3535(1)()(2)(),0,10,20,,60(3)(),0,10,20,,60ttPAVAtVarLt例5.2答案353535653535356503535353535(1)1001/651/65,06510.25865112.7333()0.02xttttttlxptptAvpdtaAaAPAa例5.2答案35353535222353535(65)35652(65)235()()()()1111656511652tttttttttttVAAPAaPAVarLAAeAatteAt例5.2答案00.00000.1187100.05770.1001200.12890.1174300.22710.1073400.36190.0861500.55080.0508600.82140.009735()tVA()tVarLt例5.31000()1001000()10.50.03txxxtifVAPAshowa,=,=solutions()()(1)()1[()]1()10.122.22()0.030.0105txxtxxtxtxxtxxttxxtxVAAPAaaPAaPAaVAaPA例5.5:1:()()1()()2txxtxxttxxtPAPAuAAuVAPA如果,且,试用表示例5.5答案::11::11:::1:1:1:()()()11,1()()11(1)211txxxtxtxtxtxtxtxtxtxxtxttxxtxtxtxtxtxxttxxtxxtxtxxtxxtxtxxtxxPAPAAAuPAAAAAAAEAAEAuAAuAAAVAAPAaAAAAAAAAAAA11112xtxtuuA7、前瞻法应用的推广完全连续场合完全离散场合(1)终身寿险,终身缴费()()txxtxxtkxxkxxkfullycontinuousVAAPAafullydiscreteVAPa(2)n年定期寿险,n年缴费111::::111::::(),()0,,0,xtntxnxtnttxnxknkxnxknkkxnfullycontinuousAPAatnVAtnfullydiscreteAPaknVkn(3)n年生存寿险,n年缴费111::::111::::(),()1,,1,xtntxnxtnttxnxknkxnxknkkxnfullycontinuousAPAatnVAtnfullydiscreteAPaknVkn(4)n年两全保险,n年缴费::::::::(),()1,(),1,xtntxnxtnttxnxknkxnxknkkxnfullycontinuousAPAatnVAtnfullydiscreteAPAaknVkn(5)h次缴费终身寿险::(),(),,,xthxhxthttxxtxkhxxkhkkxxkfullycontinuousAPAathVAAthfullydiscreteAPakhVAkh(6)h次缴费n年两全保险::::::::::(),(),1,,,1,hxtntxnxththtxnxtnthxknkxnxkhkhkxnxknkfullycontinuousAPAathnVAAhtntnfullydiscreteAPakhnVAhknkn(7)h次缴费n年定期保险11:::11::1:::11::(),(),0,,,0,hxtntxnxththtxnxtnthxknkxnxkhkhkxnxknkfullycontinuousAPAathnVAAhtntnfullydiscreteAPakhnVAhknkn(8)m年延期、m年缴费的终身生存年金::(),(),,(),xtxmtmxtmttxmxtxkxmkmxkmkkxmxkfullycontinuousaPaatmVaatmfullydiscreteaPakmVaakm例5.6设保险公司发行某保单,被保险人的整值剩余寿命K的概率函数为该保单在被保险人死亡年末给付1,年利率6%。根据净均衡保费原则确定:(1)在趸缴保费场合,确定在各年期末责任准备金。(2)在净均衡保费场合,确定在各年期末责任准备金。(3)如果不使用净均衡原则,求使得保单签发时保险人未来损失变量为正的概率不超过1/4的最低保费010,1,2,34kqk例5.6答案(1)趸缴保费场合(2)期缴保费场合(3)p=0.458参照时刻0123责任准备金00.890.920.94参照时刻0123责任准备金00.180.380.577例5.6提示(趸缴保费场合)002030Pr()104114124134KkLkvAkvAkvAkv保单签发时40123Pr()103113123AKkLkvkvkv签发一年后例5.6提示(期缴净保费场合)012233Pr()104114124134KkLkvPakvPakvPak保单签发时44112233Pr()103113123vPaKkLkvPakvPakvPa签发一年后例5.6提示(3)01100001Pr(0)4ln(1)0(1)01lnln111Pr(0)Pr()ln441ln11p=0.458lnkkhLppppppdLvLvkddddvppdhLkhqvhppdv求使得的最低保费,令,即由题意可知,满足这一条件的最大整数例5.7例:82岁签发的一份4年期完全离散式,保额为1000的

1 / 91
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功