马氏体强化机制及相变研究摘要:马氏体(martensite)是黑色金属材料的一种组织名称。本文以马氏体的组织形态以及马氏体相变过程为出发点,主要阐述了马氏体的主要强韧化机制以及马氏体相变研究中的一些新进展,包括马氏体相变特性、马氏体相变热力学、马氏体相变晶体学等。关键词:马氏体,强化机制,马氏体相变,相变热力学,相变晶体学。1.马氏体概述马氏体(martensite)是黑色金属材料的一种组织名称。将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。马氏体最先由德国冶金学家AdolfMartens(1850-1914)于19世纪90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片状(plate)或者板条状(lath),但是在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状的原因。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一。20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。2.马氏体形态人们在马氏体形态方面进行了大量研究,发现了马氏体的许多不同形态,并找出了马氏体及其精细结构与性能之间的关系,对马氏体的晶体结构也有了比较深刻的认识。马氏体形态虽然多种多样,但从其形态特征上基本可归纳为条状马氏体和片状马氏体两大类,其精细结构可划分为位错和孪晶。同时发现马氏体与母相保持严格的晶体学位向关系。2.1条状马氏体主要形成于含碳量较低的钢中,又称低碳马氏体。因其形成于200℃以上的较高温度,故又称高温马氏体;因其精细(亚)结构为高密度(一般为0.3~0.9×1012cm/cm2)位错,故又称位错马氏体。在光学显微镜下观察,条状马氏体的主要形态特征为:呈束状排列。近于平行而长度几乎相等的条状马氏体组成一束,或称为马氏体“领域”(即板条群)。板条群的尺寸约为20~35μm,由若干个尺寸大致相同的板条在空间位向大致平行排列所作组成,在原奥氏体的一颗晶粒内,可以发现几团马氏体束(即几个板条群,常为3~5个,每一个板条为一个马氏体单晶体,其尺寸约为0.5μm×5.0μm×20μm),马氏体板条具有平直界面,界面近似平行于奥氏体的{111}γ,即惯习面,相同惯习面的马氏体板条平行排列构成马氏体板条群。现已确定,这些稠密的马氏体板条多被连续的高度变形的残余奥氏体薄膜(约为20μm)所隔开,且板条间残余奥氏体薄膜的碳含量较高,在室温下很稳定,对钢的机械性能会产生显著影响。马氏体束与束之间以大角度相界面分开,一般为60°或120°角,马氏体束不超越原奥氏体晶界。同束中的马氏体条间以小角度晶界面分开。每束内还会有黑白色调反差,同一色调区的板条具有相同位向,称之为同向板条区。2.2片状马氏体片状马氏体主要形成于含碳量较高的钢中,又称为高碳马氏体;因其形成于200℃以下的低温,故又称低温马氏体;因其精细(亚)结构为大量孪晶,故又称其为孪晶马氏体。这种孪晶在靠近马氏体片的边界处消失,不会穿过马氏体边界,而边界上的亚结构则为复杂的位错网络,现已查明:马氏体片的中脊仍是密度更高的极细孪晶。片状的马氏体的空间形态为双凸透镜状。在光学显微镜下观察的乃是截面形状,因试样磨面对每一马氏体片的切割角度不同,故有针状、竹叶状,所以又称针(竹叶)状马氏体,马氏体片之间不平行,相交成一定角度(如60°、120°)。在原奥氏体晶粒中,首先形成的马氏体片是贯穿整个晶粒的,但一般不穿过晶界,只将奥氏体晶粒分割,以后陆续形成的马氏体由于受到限制而越来越小。所以片状马氏体的最大尺寸取决于原奥氏晶粒大小,原奥氏体晶粒越粗大,马氏体片越大,反之则越细。当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶(或称为隐针)马氏体。片状马氏体的基本特征是在一个奥氏体晶粒内形成的第一片马氏体针较粗大,往往横贯整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体针大小受到限制,因此针状马氏体的大小不一,但其分布有一定规律,基本上马氏体按近似60°角分布。且在马氏体针叶中有一中脊面,含碳量愈高,愈明显,并在马氏周围有残留奥氏体伴随。由于针状马氏体形成于较低温度,故自回火现象很弱,在相同试剂浸蚀时,总是比板条马氏体显得明亮。马氏体的硬度主要取决于它的含碳量。随碳含量增加,马氏体硬度升高,当碳含量质量分数达0.6%时,淬火钢的硬度值接近峰值。当碳含量进一步增加时,虽然马氏体硬度有所升高,但由于残余奥氏体的含量也增加,会使钢的硬度有所下降。合金元素含量对马氏体的硬度影响不大,但可以提高它的强度。2.3其它形态马氏体(1)隐晶(或隐针)马氏体在实际生产中,高碳钢或高碳高合金钢正常加热淬火时,由于原始奥氏体晶粒非常细小,所形成的马氏体晶体极细,在光学显微下看不出马氏体针的形态,称为隐晶(或隐针)马氏体。一般中碳钢快速加热时,也会得到极细的奥氏体晶粒,淬火后得到极细的条状和片状马氏体的混合组织,在光学显微镜下也看不出马氏体形态特征,也是一种隐晶马氏体。(2)蝶状马氏体在Fe-Ni合金和Fe-Ni(-Cr)-C合金中,当马氏体在板条状马氏体的形成温度范围之间的温区形成时,会出现具有特异形态的马氏体,这种马氏体的立体形态为“V”形柱状,其断面呈蝴蝶状,故称为蝶状马氏体或多角状马氏体。蝶状马氏体两翼的惯习面为{225}γ,两翼相交的结合面为{100}γ。电子显微镜观察表明,蝶状马氏体的内部亚结构为高密度位错,无孪晶存在,与母相的晶体学位向关系大体上符合K-S关系。(3)薄片状马氏体在Ms点极低的Fe-Ni-C合金中,可观察到一种厚度约为3~10μm的薄片状马氏体,其立体形态为薄片状,与试样磨面相截呈宽窄一致的平直带状,带可以相互交叉,呈现曲折、分枝等形态,薄片状马氏体的惯习面为{259}γ,与奥氏体之间的位向关系为K-S关系,内部亚结构为{112}α/孪晶,孪晶的宽度随碳含量升高而减小。平直的带中无中脊,这是它与片状马氏体的不同之处。(4)ε马氏体上述各种马氏体都是具有体心立方(正方)点阵结构的马氏体(α/)。而在奥氏体层错能较低的Fe-Mn-C(或Fe-Cr-Ni)合金中有可能形成具有密排六方点阵结构的ε马氏体。ε马氏体呈极薄的片状,厚度仅为100~300nm,其内部亚结构为高密度层错。ε马氏体的惯习面为{111}γ,与奥氏体之间的位向关系为{111}γ//{0001}ε,110γ//1120ε。2.4影响马氏体形态的因素实验证明,钢的马氏体形态主要取决于马氏体形成温度和过冷奥氏体中碳及合金元素的含量。对碳钢而言,随着钢中含碳量的增加,条状马氏体相对量减少,片状马式体数量则相对增加。一般来说,当奥氏体含碳量大于1%时,淬火后几乎完全是片状马氏体;当奥氏体中含碳量小于0.2%时,淬火后几乎完全是条状马氏体。含碳量在0.20~0.40%之间时,则以条状马氏体为主;含碳量在0.40~0.80%之间时,则为条状和片状马氏体的混合组织。除钴、铝以外,多数合金元素均使Ms点下降,故都增加马氏体的孪晶倾向。钴虽提高Ms点,但却不能减少马氏体内部的孪晶。此外,应力和变形也能改变马氏体形态,在高的静压力下,可显著降低Ms,可在低碳钢中获得大片马氏体。若在Ms点以上不太高的温度进行塑性变形,则会显著增加条状马氏体的含量。3.马氏体的强化机制金属的强化机制大致可分为固溶强化机制、第二相强化、形变强化及细晶强化等。近年来对马氏体高强度、高硬度的本质进行了大量研究,认为马氏体的高强度、高硬度是多种强化机制综合作用的结果。主要的强化机制包括:相变强化、固溶强化、时效强化、形变强化和细晶强化等。3.1相变强化马氏体相变的强化重庆316L不锈钢管研究认为:在不锈钢中具有最高硬度的SUS440(2(13Cr-IC)(640-700[1V)属于马氏体系不锈钢,马氏体组织的结构非常微细,而且在其内部存在高密度的位错,若使碳过饱和固溶还能提高强度。另方面,经过最后的回火处理可以得到碳化物等析出物弥散细微分布的组织。马氏体系不锈钢用固溶碳量和加火处理可以调整其强度。例如,SUS420J2(13Cr-O.3C)从i000~C的高温奥氏体区急冷时,发生固溶0.3%C的马氏体相变,再经回火热处理就会使碳化物等析出物呈微细弥散分布。其强度可达到约550HV。3.2细晶强化人们早己知道晶粒大小影响金属强度。铁素体晶粒大小对退火的软钢屈服强度的影响,可以看出晶粒直径d与屈服强度间有着直线关系,晶粒越细屈服强度越高。这种屈服强度与晶粒大小间的关系称霍尔佩琪法则,因变形在晶粒内运动的位错在晶界其运动被阻,所以晶界大量存在的细晶粒材料,其强度很高。前述的固溶强化、析出强化及加工硬化若过分提高强度,则会使韧性受损。所以,有时根据加工、使用条件使强度有一定限制。另一方面,当晶粒细化时不但不损坏韧性,而且还能提高强度。现在,对钢铁材料的晶粒细化的研究非常盛行,并以“超级金属的技术开发。为题进行着开发,通常不锈钢的晶粒直径为数十微米,但在这些课题中正在研究一种制造方法,使金属晶粒有1/100到数百毫微米(nm),例如,晶粒直径为300nm的奥氏体系不锈钢其拉伸强度为1100N/mm2,约是通常粒径材料的2倍。为了能在不损害韧性的前提下得到高强度,对这种方法寄予了很大的希望。在JIS规定的不锈钢中存在具有微细组织的不锈钢,这是把不同组织复合的双相系不锈钢。SUS329J4L(25Cr—6Ni—3Mo—N)具有在铁素体母相中分布着岛状奥氏体相的组织,由于为复合组织故各组织很细微。另外,由于加入了氮使之固溶强化提高了强度,耐点蚀性也得到改善。由于晶粒细化和固溶强化的复合作用,使得双相钢的屈服强度等强度特性好于奥氏体系和铁索体系。3.3固溶强化纯金属由于强度低,很少用作结构材料,在工业上合金的应用远比纯金属广泛。合金组元溶入基体金属的晶格形成的均匀相称为固溶体。纯金属一旦加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低,这个现象称为固溶强化。固溶强化的机制是:金属材料的变形主要是依靠位错滑移完成的,故凡是可以增大位错滑移阻力的因素都将使变形抗力增大,从而使材料强化。合金组元溶入基体金属的晶格形成固溶体后,不仅使晶格发生畸变,同时使位错密度增加。结果表明,在碳含量小于0.4%时,马氏体的屈服强度随碳含量增加而升高;碳含量大于0.4%时,马氏体的屈服强度不再增加。这一现象的普遍解释为,固溶的间隙C原子处于Fe原子组成的八面体的中心位置,马氏体中的八面体为扁八面体(奥氏体中为正八面体),C原子溶入后形成以C原子为中心的畸变偶极应力场,该应力场与位错产生强烈的交互作用,令位错运动使马氏体强度升高。当含碳量高于0.4%时,C原子间距太近,产生的畸变偶极应力场彼此抵消,降低了强化效果。3.4形变强化生产金属材料的主要方法是塑性加工,即在外力作用下使金属材料发生塑性变形,使其具有预期的性能、形状和尺寸。在再结晶温度以下进行的塑性变形称为冷变形。金属材料在冷变形过程中强度将逐渐升高,这一现象称为形变强化。钢变形时给结晶加上了剪断应力,在位错运动的同时,给结晶导入了大量的位错。加工硬化加工轧制和拔丝这种塑性变形使晶体内的位错密度增加,是强化钢的方法。据重庆304不锈钢卷板研究证明这种加工硬化作用奥氏体系比铁素体系大得多。在18Cr-8Ni组成的亚稳定奥氏体系,因位错密度增大的硬化和马氏体的生成(加工引起相变)容易得到高强度。利用加工硬化的材料称硬化材,其强度可根据轧制率的变化按H(硬级)、3/4H和1/2H的强度水平划分,SUS301(17Cr-TNi)硬化材在家庭电器机械的压簧和汽车的引擎垫圈、通信机械的连接器材等板弹簧制品