2019-2020学年贵州省黔南州八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.2.(3分)如果代数式有意义,则实数x的取值范围是()A.x≥﹣3B.x≠0C.x≥﹣3且x≠0D.x≥33.(3分)下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x4.(3分)如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.7cmB.4cmC.5cmD.3cm5.(3分)已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0)D.(﹣10,3)6.(3分)如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.(3分)若=﹣a,则a的取值范围是()A.﹣3≤a≤0B.a≤0C.a<0D.a≥﹣38.(3分)已知是正整数,则满足条件的最大负整数m为()A.﹣10B.﹣40C.﹣90D.﹣1609.(3分)已x+=3,则的值是()A.9B.8C.D.10.(3分)如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2二、填空题(每小题3分,共24分)11.已知三角形三边分别为1,x,5,则整数x=.12.当x=时,分式的值为0.13.一个多边形的每一个内角都是108°,你们这个多边形的边数是.14.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=.15.一种细菌的半径是5×10﹣4m,用小数把它表示出来是.16.若等腰三角形的周长为26cm,一边为11cm,则腰长为.17.已知(x+y)2=36,(x﹣y)2=16,则xy=.18.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.三、解答题(共46分)19.(6分)计算:(1)﹣7m(﹣4m2p)2÷7m2;(2)(m﹣n)(m+n)+(m+n)2﹣2m2.20.(5分)先化简,再求值:(a﹣2﹣)÷,其中a=(3﹣π)0+()﹣1.21.(7分)如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称轴图形△A1B1C1(不写画法);点A1的坐标为;点B1的坐标为;点C1的坐标为.(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.22.(6分)已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠BDC的度数.23.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:24.(8分)从2017年起,昆明将迎来“高铁时代”,这就意味着今后昆明的市民外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从昆明到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为千米;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.(10分)如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)分别以AB、AO为一边作等边△ABE、△AOD,求证:BD=EO;(3)在(2)的条件下,连接DE交AB于F,求证:F为DE的中点.2018-2019学年贵州省黔南州八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】利用分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式,进而得出答案.【解答】解:①、②、③、④中,是分式的有②、④.故选:B.【点评】此题主要考查了分式的定义,正确把握定义是解题关键.2.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.3.【分析】直接利用幂的乘方运算法则以及积的乘方运算法则、合并同类项法则分别化简得出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(﹣3a2)3=﹣27a6,故此选项错误;C、(﹣a)•(﹣a)6=﹣a7,故此选项正确;D、a3+a3=2a3,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.4.【分析】根据三角形外角性质对A进行判断;根据等腰三角形的性质对B进行判断;根据全等三角形的判定方法对C进行判断;根据三角形高的定义对D进行判断.【解答】解:A、三角形的一个外角大于任何一个与之不相邻的任意一个内角,所以A选项错误;B、等腰三角形的两个底角相等,所以B选项错误;C、三个边分别对应相等的两个三角形全等,所以C选项错误;D、锐角三角形的三条高在三角形内部,所以D选项正确.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.【分析】分别利用公式法以及提取公因式法分解因式得出答案.【解答】解:A、m2+n2无法分解因式,故此选项错误;B、x2+2x﹣1无法分解因式,故此选项错误;C、a2﹣a=a(a﹣1),正确;D、a2+2a+1=(a+1)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.6.【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:D.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.7.【分析】直接多项式乘法得出b,c的值,再利用关于y轴对称点的性质得出答案.【解答】解:∵x2+bx+c=(x+5)(x﹣3),∴x2+bx+c=x2+2x﹣15,∴b=2,c=﹣15,则点P(2,﹣15)关于y轴对称的点的坐标是:(﹣2,﹣5).故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.8.【分析】以及三角形内角和定理,即可得到∠ABC+∠ACB=180°﹣120°=60°,再根据∠1=∠2=∠3,∠4=∠5=∠6,即可得到∠DBC+∠DCB的度数,最后利用三角形内角和定理可得∠BDC的度数.【解答】解:在△ABC中,∵∠A=120°,∴∠ABC+∠ACB=180°﹣120°=60°,又∵∠1=∠2=∠3,∠4=∠5=∠6,∴∠DBC+∠DCB=×60°=40°,∴∠BDC=180°﹣40°=140°,故选:C.【点评】此题考查三角形的内角和,角平分线的定义,解题时注意:三角形内角和是180°.9.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:B.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,列出相应的方程.10.【分析】连接CN,与AD交于点M,连接BM,此时BM+MN取得最小值,由AD为∠BAC的角平分线,利用三线合一得到AD⊥BC,且平分BC,可得出BM=CM,由BM+MN=CM+MN=CN,可得出CN的长为最小值,利用等边三角形的性质及勾股定理求出即可.【解答】解:连接CN,与AD交于点M,连接BM,此时BM+MN取得最小值,由AD为∠BAC的角平分线,利用三线合一得到AD⊥BC,且平分BC,∴AD为BC的垂直平分线,∴CM=BM,∴BM+MN=CM+MN=CN,即最小值为CN的长,∵△ABC为等边三角形,且AB=2,AN=1,∴CN为AB边上的中线,∴CN⊥AB,在Rt△ACN中,AC=AB=2,AN=1,根据勾股定理得:CN==,故选:A.【点评】此题考查了轴对称﹣最短路线问题,以及等边三角形的性质,熟练掌握各自的性质是解本题的关键.二、填空题(每小题3分,共24分)11.【分析】根据三角形的三边关系定理三角形两边之和大于第三边;三角形的两边差小于第三边可确定x的取值范围,再找出符合条件的整数即可.【解答】解:根据三角形的三边关系定理可得:5﹣1<x<5+1,解得:4<x<6,∵x为整数,∴x=5,故答案为:5.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.12.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:∵=0,∴x=﹣2.故答案为:﹣2.【点评】此题考查的是对分式的值为0的条件,分子等于0,分母不能等于0,题目比较简单.13.【分析】一个多边形的每一个内角都等于108°,根据内角与相邻的外角互补,因而每个外角是72度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出多边形的边数.【解答】解:180﹣108=72,多边形的边数是:360÷72=5.则这个多边形是五边形.故答案为:5.【点评】考查了多边形内角与外角,已知多边形的内角求边数,可以根据多边形的内角与外角的关系来解决.14.【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【解答】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故答案为40°.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.15.【分析】根据科学记数法,可得答案.【解答】解:5×10﹣4m,用小数把它表示出来是0.0005,故答案为:0.0005.【点评】本题考查了科学记数法,n是负几小数点向左移动几位.16.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故答案为:7.5cm或11cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.17.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:因为(x+y)2﹣(x﹣y)2=4xy=36﹣16=20,解得:xy=5;故答案为:5【点评】此题考查了完全平方公式,熟练掌握运算法则是解本题的关键.18.【分析】过O作O