..2018-2019学年山东省济宁市兖州市九年级(上)期末数学试卷 一、选择题:本大题共10道小题,每小题给出的四个选项中,只有一项符合题意,每小题选对得3分,满分共30分1.(3分)下列说法正确的是( )A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次2.(3分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是( )A.3B.﹣3C.D.﹣3.(3分)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是( )A.B.C.D.4.(3分)对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是( )A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是25.(3分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是( )..A.AB=ADB.BC=CDC.D.∠BCA=∠DCA6.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+4407.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )A.∠ABD=∠EB.∠CBE=∠CC.AD∥BCD.AD=BC8.(3分)a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则( )A.a<b<0B.b<a<0C.a<0<bD.b<0<a9.(3分)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有( )个.A.1B.2C.3D.4..10.(3分)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=( )A.5B.4C.D. 二、填空题:本大题共5道小题,每小题3分,满分共15分,要求只写出最后结果11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为 .12.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是 .13.(3分)如图,点A在双曲线y=(x>0)上,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,当AC=1时,△ABC的周长为 ...14.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为 .15.(3分)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为 . 三、简答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤16.(7分)如图,在平面直角坐标系xOy中,双曲线y=过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=6.(1)填空:点A的坐标为 ;(2)求双曲线和AB所在直线的解析式...17.(7分)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.18.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.19.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积...20.(8分)已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.21.(8分)如图,湿地景区岸边有三个观景台A、B、C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).22.(9分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三..角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标. ..2018-2019学年山东省济宁市兖州市九年级(上)期末数学试卷参考答案与试题解析 一、选择题:本大题共10道小题,每小题给出的四个选项中,只有一项符合题意,每小题选对得3分,满分共30分1.(3分)下列说法正确的是( )A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:A. 2.(3分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是( )A.3B.﹣3C.D.﹣【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,..∴S矩形OAPB=OA•PA=﹣x•(﹣)=3,故选:A. 3.(3分)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是( )A.B.C.D.【解答】解:在Rt△ABC中,BC=3,AB=5,∴cosB==,故选:A. 4.(3分)对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是( )A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是2【解答】解:由抛物线的解析式:y=﹣(x﹣1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选:B. 5.(3分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是( )..A.AB=ADB.BC=CDC.D.∠BCA=∠DCA【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选:B. 6.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+440【解答】解:由题意可得,1000(1+x)2=1000+440,故选:A. 7.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )A.∠ABD=∠EB.∠CBE=∠CC.AD∥BCD.AD=BC【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选:C... 8.(3分)a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则( )A.a<b<0B.b<a<0C.a<0<bD.b<0<a【解答】解:∵y=﹣,∴反比例函数y=﹣的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,∴a<b<0,故选:A. 9.(3分)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有( )个.A.1B.2C.3D.4【解答】解:抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,故①错误;由于对称轴为x=﹣1,..∴x=﹣3与x=1关于x=﹣1对称,∵x=﹣3时,y<0,∴x=1时,y=a+b+c<0,故②错误;∵对称轴为x=﹣=﹣1,∴2a﹣b=0,故③正确;∵顶点为B(﹣1,3),∴y=a﹣b+c=3,∴y=a﹣2a+c=3,即c﹣a=3,故④正确;故选:B. 10.(3分)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重