电磁感应中的导轨与导体棒问题电动式发电式阻尼式v0F运动特点最终特征a逐渐减小的减速运动静止a逐渐减小的加速运动匀速a逐渐减小的加速运动匀速基本模型I=0(或恒定)I恒定I=0常见单棒问题模型阻尼式单棒vv001.电路特点2.安培力的特点安培力为阻力,并随速度减小而减小。22BBlvFBIlRr3.加速度特点加速度随速度减小而减小22()BFBlvammRrvtOv04.运动特点a减小的减速运动5.最终状态静止导体棒相当于电源,当速度为v时,电动势E=Blvvv006.三个规律(1)能量关系:22()BFBlvammRr20102mvQ(2)电量关系:00BIltmv0mvqBlBlsqnRrRr(3)瞬时加速度:RrQRQr阻尼式单棒一、单棒问题:【例1】如图所示,光滑的U型金属导轨PQMN水平地固定在竖直向上的匀强磁场中.磁感应强度为B,导轨的宽度为L,其长度足够长,QM之间接有一个阻值为R的电阻,其余部分电阻不计.一质量为m,电阻也为R的金属棒ab,恰能放在导轨之上并与导轨接触良好.当给棒施加一个水平向右的冲量,棒就沿轨道以初速度v0开始向右滑行.求:(1)开始运动时,棒中的瞬间电流i和棒两端的瞬间电压u分别为多大?(2)当棒的速度由v0减小到v的过程中,棒中产生的焦耳热Q是多少?棒向右滑行的位移x有多大?变式训练1:AB杆受一冲量作用后以初速度v0=4m/s,沿水平面内的固定轨道运动,经一段时间后而停止。AB的质量为m=5g,导轨宽为L=0.4m,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10-2C,(g取10m/s2)求上述过程中:(1)AB杆运动的距离;(2)AB杆运动的时间;(3)当杆速度为2m/s时其加速度为多大?ABRv0B发电式单棒FF1.电路特点导体棒相当于电源,当速度为v时,电动势E=Blv2.安培力的特点安培力为阻力,并随速度增大而增大3.加速度特点加速度随速度增大而减小4.运动特点a减小的加速运动BFBIlBlvBlRr22BlvRr=tvOvm)(22rRmvlBmFmFFaB5.最终状态匀速运动FF6.两个极值(1)v=0时,有最大加速度:(2)a=0时,有最大速度:发电式单棒mFam0)(22rRmvlBmFmFFaB22)(lBrRFvmFF7.稳定后的能量转化规律8.起动过程中的三个规律(1)动量关系:(2)能量关系:(3)瞬时加速度:发电式单棒rRBlvFvmm2)(mmvBlqFt221mmvQFx)(22rRmvlBmFmFFaB【例2】如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则()A.随着ab运动速度的增大,其加速度也增大B.外力F对ab做的功等于电路中产生的电能C.当ab做匀速运动时,外力F做功的功率等于电路中的电功率D.无论ab做何种运动,它克服安培力做的功一定等于电路中产生的电能答案:CD9.几种变化(4)拉力变化(3)导轨面变化(竖直或倾斜)(1)电路变化(2)磁场方向变化FBFFBFQBPCDA竖直倾斜变式训练2.在磁感应强度为B的水平均强磁场中,竖直放置一个冂形金属框ABCD,框面垂直于磁场,宽度BC=L,质量m的金属杆PQ用光滑金属套连接在框架AB和CD上如图.金属杆PQ电阻为R,当杆自静止开始沿框架下滑时:(1)开始下滑的加速度为多少?(2)框内感应电流的方向怎样?(3)金属杆下滑的最大速度是多少?QBPCDA解:开始PQ受力为mg,mg所以a=gPQ向下加速运动,产生顺时针方向感应电流,受到向上的磁场力F作用。IF当PQ向下运动时,磁场力F逐渐的增大,加速度逐渐的减小,V仍然在增大,当G=F时,V达到最大速度。∴Vm=mgR/B2L2(1)(2)(3)即:F=BIL=B2L2Vm/R=mg变式训练3.如图所示,竖直平面内的平行导轨,间距l=20cm,金属导体ab可以在导轨上无摩檫的向下滑动,金属导体ab的质量为0.2g,电阻为0.4Ω,导轨电阻不计,水平方向的匀强磁场的磁感应强度为0.1T,当金属导体ab从静止自由下落0.8s时,突然接通电键K。(设导轨足够长,g取10m/s2)求:(1)电键K接通前后,金属导体ab的运动情况(2)金属导体ab棒的最大速度和最终速度的大小。KabVm=8m/sV终=2m/s若从金属导体ab从静止下落到接通电键K的时间间隔为t,ab棒以后的运动情况有几种可能?试用v-t图象描述。mgF解析:因为导体棒ab自由下落的时间t没有确定,所以电键K闭合瞬间ab的速度无法确定,使得ab棒受到的瞬时安培力F与G大小无法比较,因此存在以下可能:(1)若安培力FG:则ab棒先做加速度减小的加速运动,再做匀速直线运动(2)若安培力FG:则ab棒先做加速度减小的减速运动,再做匀速直线运动(3)若安培力F=G:则ab棒始终做匀速直线运动KabmgF课后巩固.如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。(1)由b向a方向看到的装置如图2所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。θRabBLNMQPθbθB图1图2mgNFmRvLBgsinθa2222mLBmgRsinθvRBLvREIθRabBLNMQPθbθB图1图2若ab与导轨间存在动摩擦因数为μ,情况又怎样?bθBmgNFf当F+f=mgsinθ时ab棒以最大速度Vm做匀速运动F=BIL=B2L2Vm/R=mgsinθ-μmgcosθVm=mg(sinθ-μcosθ)R/B2L2电动式单棒1.电路特点导体为电动边,运动后产生反电动势。2.安培力的特点安培力为运动动力,并随速度减小而减小。3.加速度特点加速度随速度增大而减小4.运动特点a减小的加速运动BFBIl(EEBlRr反)(BElvBlRr)=tvOvm)()(rRmBlvEBlmFaB5.最终状态匀速运动6.两个极值(1)最大加速度:(2)最大速度:v=0时,E反=0,电流、加速度最大mEIRr,mmFBIl稳定时,电流为0,加速度为0,速度最大电动式单棒)(rRmBlEmFammmBlvEBlEvm7.几种变化(1)导轨不光滑(2)倾斜导轨(3)有初速度(4)磁场方向变化v0BB电动式单棒