七年级苏科版数学上册期末复习知识点注意事项:1.本试卷共4页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6题,每小题2分,共12分)1.2的相反数是()A.2B.2C.12D.12【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.2.下列各组代数式中,不是同类项的是()A.2与5B.0.5xy2与3x2yC.-3t与200tD.ab2与8b2a【答案】B【解析】【分析】同类项定义:单项式所含字母及字母指数相同的是同类项,单个数也是同类项.根据定义即可判断选择项.【详解】A是两个常数,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.3.下列图形经过折叠不能围成棱柱的是().A.B.C.D.【答案】B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.4.如图,已知射线OA⊥射线OB,射线OA表示北偏西25°的方向,则射线OB表示的方向为()A.北偏东65°B.北偏东55°C.北偏东75°D.东偏北75°【答案】A【解析】【分析】首先求得OB与正北方向的夹角,然后根据方向角的定义求解.【详解】∵OA与正北方向的夹角是25°,∴OB与正北方向的夹角是:90°-25°=65°,则OB的方向角为北偏东65°.故选:A.【点睛】本题考查了方向角的定义,理解定义是本题的关键.5.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做x个“中国结”,可列方程为().A.9764xxB.9764xxC.9764xxD.9764xx【答案】B【解析】【分析】计划做x个“中国结”,根据题意可用两种方式表示出参与制作的人数,根据人数不变这一等量关系即可列出方程.【详解】计划做x个“中国结”,由题意可得x9x764,故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A、B、C三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是()A.20B.25C.30D.35【答案】C【解析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.解:设折痕对应的刻度为xcm,依题意有绳子被剪为10cm,20cm,30cm的三段,①x=202+10=20,②x=302+10=25,③x=302+20=35,④x=102+20=25,⑤x=102+30=35,⑥x=202+30=40.综上所述,折痕对应的刻度可能为20、25、35、40.故选C.“点睛”本题考查了一元一次方程的应用和图形的简拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分类思想的运用.二、填空题(本大题共10题,每小题2分,共20分)7.一个数的平方为16,这个数是.【答案】【解析】【详解】解:2(4)16,这个数是48.我国南海海域的面积约为35000002㎞,该面积用科学计数法应表示为_______2㎞.【答案】3.5×106.【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).3500000一共7位,从而3500000=3.5×106.【详解】解:3500000=3.5×106.故答案为:3.5×106.9.写出一个含a的代数式,使a不论取什么值,这个代数式的值总是负数__.【答案】-a2-1(答案不唯一)【解析】【分析】要求所写代数式的值恒为负数,联系平常所学知识,正数的相反数是负数及初中阶段所学三种数具有非负性:绝对值,偶次方,二次根式,不难得出结果.【详解】由题意,可知符合条件的代数式可以是-|a|-1,-a2-1,-2a-5等,答案不唯一.【点睛】本题是开放性试题,答案不唯一.通过对此题的训练,有利于培养学生的发散思维.10.已知1x是方程253axa的解,则a__.【答案】8【解析】【分析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.如图,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是________.【答案】过一点有且只有一条直线与已知直线垂直【解析】【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论.【详解】∵OM⊥l,ON⊥l,∴OM与ON重合(平面内,经过一点有且只有一条直线与已知直线垂直),故答案为:平面内,经过一点有且只有一条直线与已知直线垂直.【点睛】本题考查了垂线,利用了垂线的性质:平面内过一点有且只有一条直线与已知直线垂直.12.用边长为10cm的正方形,做了一套七巧板.拼成如图所示的一座“桥”,则“桥”中涂色部分的面积为______cm.【答案】50【解析】【分析】读图分析阴影部分与整体的位置关系;易得阴影部分的面积即为△ABC的面积,是原正方形的面积的一半.【详解】观察得到阴影部分为正方形的一半,即为2110=502.故答案为50.【点睛】本题目考查了七巧板;正方形的性质.主要考查正方形对角线相互垂直平分相等的性质,读图也很关键.根据图形之间的关系得出面积关系是解题关键.13.若∠α=40°15′,则∠α的余角等于________°.【答案】49.75【解析】【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】∵∠α=40°15′,∴∠a的余角=90°-40°15′=49°45′=49.75°.故答案为:49.75.【点睛】本题考查了余角的知识,属于基础题,解答本题的关键是熟记互为余角的两角之和为90°.14.若221xx=4,则2247xx的值是________.【答案】1【解析】【分析】先根据已知条件求出x2-2x=-3的值,将代数式变形后再代入进行计算即可得解.【详解】∵221xx=4,∴x2-2x=-3,∴22247=2(2)72(3)7671xxxx.故答案为:1.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.15.在直线l上有四个点A、B、C、D,已知AB=8,AC=2,点D是BC的中点,则线段AD=________.【答案】3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC=8+2=10,由线段中点的性质,得BD=CD=12BC=12×10=5,AD=CD-AC=5-2=3;当C在线段AB上时,由线段的和差,得BC=AB-AC=8-2=6,由线段中点的性质,得BD=CD=12BC=12×6=3,所以AD=AC+CD=2+3=5.综上所述,AD=3或5.故答案为:3或5.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.【答案】1838【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1838.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838,故答案为1838.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.三、解答题(本大题共9题,共68分)17.计算:(1)34111223;(2)357()(24)468.【答案】(1)11;(2)19【解析】【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律进行简算即可得到结果.【详解】(1)34111223=11(3)(8)2,=-1+12=11.(2)357()(24)468=357(24)(24)(24)468,=18-20+21=19.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:(1)3121xx;(2)2151136xx.【答案】(1)x=15;(2)x=-3【解析】【分析】(1)先去括号,再移项,合并同类项,系数化为1,即可得到方程的解;(2)先去分母,再去括号,然后移项,合并同类项,最后系数化为1,即可得到方程的解【详解】(1)3121xx去括号得:3x-3=-2-2x移项得:3x+2x=-2+3合并同类项得:5x=1系数化为1得:x=15(2)2151136xx去分母得:2(2x+1)-(5x-1)=6去括号得:4x+2-5x+1=6移项合并得:-x=3系数化为1得:x=-3【点睛】本题考查了解一元一次方程,注意:解一元一次方程的步骤是:去分母,再去括号,移项,合并同类项,系数化为119.先化简,再求值:2222233221xyxyxyxyxy,其中13x,1y.【答案】3xy+1,2【解析】【分析】先去括号,再合并同类项,最后把x、y的值代入计算即可.【详解】2222233221xyxyxyxyxy,=6x²y+2xy²-6x²y+3xy-2xy²+1=3xy+1当1,13xy时,原式=131+1=1+13=2【点睛】本题考查了整式的化简求值.解题的关键是去括号、合并同类项.20.在如图所示的方格纸上作图并标上相应的字母.(1)过点P画线段AB的平行线a;(2)过点P画线段AB的垂线,垂足为H;(3)点A到线段PH的距离即线段的长.【答案】(1)见解析;(2)见解析;(3)AH【解析】【分析】(1)根据平行线的性质与网格结构的特点作出即可;(2)根据网格结构作出垂线与AB相交于点D即可;(3)根据点到直线的距离的定义解答;【详解】(1)如图所示:(2)如图所示:(3)如图所示:【点睛】本题考查了网格结构中平行线与垂线的作法,熟练掌握网格结构是解题的关键.21.如图,是由一些相同的小立方块搭成的几何体.(1)图中共有_____________个小正方体;(2)请在下面网格中画出该几何体的三视图.【答案】(1)6;(2)详见解析.【解析】【分析】(1)根据实物图形直接得出图形的组成个数即可;(2)主视图有3列,每列小正方形数目分别为1,2,1;左视图有3列,每列小