高一数学答案一、选择题(本大题共10小题,每小题5分,共计50分)题号12345678910答案CCDCBDACDC二、填空题(本大题共5小题,每小题5分,共计25分)11.16312.8613.①②④14.2415.无穷多个三、解答题(本大题共6小题,共计75分)16.解:1()3VhSSSS上下上下222231(4848)33112()cm答:正四棱台的体积为1123cm17.解:(Ⅰ)17.①证明:PA⊥底面ABCD∵PA⊥AD又<DAB=90°∵AB⊥ADPAAB=A∵AD⊥面PABPB面PAB∴AD⊥PB在Rt△PAB中,N为斜边PB中点,且PA=AB∵AN⊥PBANAD=A∴PB⊥面ADMN又DM面ADMN∴PB⊥DM18.①证明:PA⊥面ABCD∵PA⊥AC又AC⊥ABPAAB=A∴AC⊥面PABPB面PAB∴AC⊥PB②连接BD交AC于F,连结EF在△PBD中易知EF∥PB又EF面AECPB面AEC∴PB∥面AEC(Ⅱ)23cm19.(本小题满分12分)解:(Ⅰ)∵点DA、分别是RB、RC的中点,∴BCADBCAD21//且.∴∠090RBCRADPAD.∴ADPA又PA⊥AB,DAABA∴ABCDPA面∴BCPA∵AABPAABBC,,∴BC⊥平面PAB.∵PB平面PAB,∴PBBC.(Ⅱ)1220.(Ⅰ)证法一:∵点D是正△ABC中BC边的中点,∴AD⊥BC,又A1A⊥底面ABC,∴A1D⊥BC,∵BC∥B1C1,∴A1D⊥B1C1.证法二:连结A1C1,则A1C=A1B.∵点D是正△A1CB的底边中BC的中点,∴A1D⊥BC,∵BC∥B1C1,∴A1D⊥B1C1.(Ⅱ)答:直线A1B//平面ADC1,证明如下:证法一:如图1,连结A1C交AC1于F,则F为A1C的中点,∵D是BC的中点,∴DF∥A1B,又DF平面ADC1,A1B平面ADC1,∴A1B∥平面ADC1.证法二:如图2,取C1B1的中点D1,则AD∥A1D1,C1D∥D1B,∴AD∥平面A1D1B,且C1D∥平面A1D1B,∴平面ADC1∥平面A1D1B,∵A1B平面A1D1B,∴A1B∥平面ADC1.21.①解:沿侧棱A,A1,将三棱柱的侧面展开。如图AA′=3×3=9AA1=4②d=979422∵侧面展开图对角线长为97②易知PM=29AM=2∴PA=5PC=2又∵PAPC=AMNC∴NC=PAPC·AM=54∴PC=2,NC=54