江苏省高邮中学2009-2010高一周末练习数学卷2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2009-2010江苏省高邮中学高一数学每周一练第1页共7页2009-2010江苏省高邮中学高一周末练习数学卷2一、填空题:(本大题共14小题,每小题5分,共70分)1.设集合,},,1{},,2,1{2ABAaBaA若则实数a允许取的值有个2.若集合BAaxxBxxA若},1|{},1|||{,则实数a的值是3.设集合M=},412|{Zkkxx,N=},214|{Zkkxx,则MN4.下面有四组函数,①1)(,)1()(2xxgxxf,②2()1fxx,()11gxxx,③22)1()(,)1()(xxgxxf,④21()2xfxx,21()2xgxx,其中为相同函数的是组。5.不等式312xx的解集为6.设函数)1(1)1(1)(xxxxf,则)))2(((fff=7.设全集}065|{,2xxxARU,BaaxxB11)},(|5||{且为常数,则(UAð)∪BR8.若函数)23(xf的定义域为[-1,2],则函数)(xf的定义域是9.集合M={x|4|3|x},N={xxyy22|},则MN=10.对任意实数x,若不等式kxx|1||2|恒成立,则实数k的取值范围是11.若2{20,}AxRaxxaR至多含有一个元素,则a的范围是12.设集合{|29},{|123}AxxBxaxa,且()BAB,则实数a的取值范围是13.若对于任意a[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范2009-2010江苏省高邮中学高一数学每周一练第2页共7页围是.14.函数f(x)=,,,,MxxPxx其中P,M为实数集R的两个非空子集,规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.给出下列四个判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M≠,则f(P)∩f(M)≠;③若P∪M=R,则f(P)∪f(M)=R;④若P∪M≠R,则f(P)∪f(M)≠R.其中判断正确的有二、解答题:本大题共6小题,共90分,解答应写出文字说明,证明过程或推演步骤。15.设全集U=R,集合A={x|x2-x-60},B={x||x|=y+2,y∈A},求CUB、A∩B、A∪B、CU(A∪B),(CUA)∩(CUB).。16.(1)若不等式022bxax的解集为)31,21(,求ba的值;(2)若二次不等式20axbxc的解集是11{}54xx,求不等式2220cxbxa的解集2009-2010江苏省高邮中学高一数学每周一练第3页共7页17.二次函数f(x)满足(1)()2,fxfxx且f(0)=1.(1)求f(x)的解析式;(2)在区间1,1上,y=f(x)的图象恒在2yxm的图象上方,试确定实数m的范围.18.已知函数baxxxf2)((a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k1,解关于x的不等式xkxkxf2)1()(.2009-2010江苏省高邮中学高一数学每周一练第4页共7页19.如图,在单位正方形内作两个互相外切的圆,同时每一个圆又与正方形的两相邻边相切,记其中一个圆的半径为x,两圆的面积之和为S,将S表示为x的函数,求函数)(xfS的解析式及)(xf的值域.20.已知定义域为R的函数f(x)满足22(())()ffxxxfxxx.(Ⅰ)若(2)3f,求(1)f;又若(0)fa,求()fa;(Ⅱ)设有且仅有一个实数0x,使得00()fxx,求函数()fx的解析表达式.2009-2010江苏省高邮中学高一数学每周一练第5页共7页江苏省高邮中学高一上学期第二周数学练习题答案一、填空题:1.3个;2.1或0或-1;3.;4.1;5.{|10}xx;6.1;7.=;8.[1,5];9.{0};10.k1;11.{0}或{a︱a≥81};12.6a;13.1x或3x;14.[解析]:①②③④错若P={1},M={-1}则f(P)={1},f(M)={1}则f(P)∩f(M)≠故①错若P={1,2},M={1}则f(P)={1,2},f(M)={1}则f(P)∩f(M)=故②错若P={非负实数},M={负实数}则f(P)={非负实数},f(M)={正实数}则f(P)∪f(M)≠R.故③错若P={非负实数},M={正实数}则f(P)={非负实数},f(M)={负实数}则f(P)∪f(M)=R.故④错二、解答题:15.解:A=(-2,3),∵-2x3,∴0|x|5.∴B=(-5,0)∪(0,5).∴CUB=,505,,A∩B=(-2,0)∪(0,3),A∪B=(-5,5),A∪(CUB)=5,∪(-2,3)∪,5,A∩(CUB)={0},CU(A∪B)=(CUA)∩(CUB)=5,∪,516.(1)解由题意知方程022bxax的两根为31,2121xx,又axxabxx22121,即aab231213121,解得212ba,14ba(2)解:{x|x-10或x1}17.解:(1)设2()fxaxbxc,由(0)1f得1c,故2()1fxaxbx.因为(1)()2fxfxx,所以22(1)(1)1(1)2axbxaxbxx.即22axabx,所以221,01aaabb,所以2()1fxxx2009-2010江苏省高邮中学高一数学每周一练第6页共7页(2)由题意得212xxxm在[1,1]上恒成立.即2310xxm在[1,1]上恒成立.设2()31gxxxm,其图象的对称轴为直线32x,所以()gx在[1,1]上递减.故只需(1)0g,即213110m,解得1m.18.解:(1)将0124,3221xbaxxxx分别代入方程得29913,()(2).162284axabfxxbxab解得所以(2)不等式即为02)1(,2)1(222xkxkxxkxkxx可化为即.0))(1)(2(kxxx①当).,2(),1(,21kxk解集为②当);,2()2,1(0)1()2(,22xxxk解集为不等式为时③),()2,1(,2kxk解集为时当.19.解:设另一个圆的半径为y,则222yyxx2))(12(yx22122yx,])22([)()(2222xxyxxfS)]223()222(2[)]246()22(22[22xxx,因为当一个圆为正方形内切圆时半径最大,而另一圆半径最小,所以函数的定义域为21223x因为2231[2,],222所以min(322);S因为313(2)()(322),222ff所以max3(322)2S,所以函数)(xfS的值域为)]223(23),223([.2009-2010江苏省高邮中学高一数学每周一练第7页共7页20.解:(1)因为对任意xR,有22(())()ffxxxfxxx,所以22((2)22)(2)22fff又由(2)3f,得22(322)322f,即(1)1f.若(0)fa,则22(00)00faa,即()faa.(2)因为对任意xR,有22(())()ffxxxfxxx.又因为有且只有一个实数0x,使得00()fxx.所以对任意xR,有20()fxxxx.在上式中令0xx,有20000fxxxx,又因为00()fxx,所以2000xx,故00x或01x.若00x,则2()0fxxx,即2()fxxx但此时方程2000xxxx有两个不同实根,与题设条件矛质,故00x.若01x,则有2()1fxxx,即2()1fxxx易验证该函数满足题设条件.综上,所求函数为2()1fxxx(xR)

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功