课下能力提升(二十四)[学业水平达标练]题组1化简求值1.下列各式中,值为32的是()A.2sin15°cos15°B.cos215°-sin215°C.2sin215°D.sin215°+cos215°2.设-3πα-5π2,化简1-cos(α-π)2的结果是()A.sinα2B.cosα2C.-cosα2D.-sinα23.求值:sin50°(1+3tan10°)-cos20°cos80°1-cos20°.题组2条件求值4.若tanα=3,则sin2αcos2α的值等于()A.2B.3C.4D.65.若sinα+cosαsinα-cosα=12,则tan2α=()A.-34B.34C.-43D.436.若α∈0,π2,且sin2α+cos2α=14,则tanα的值等于()A.22B.33C.2D.37.若1+tanα1-tanα=2016,则1cos2α+tan2α=________.8.已知π2απ,cosα=-45.(1)求tanα的值;(2)求sin2α+cos2α的值.题组3倍角公式的综合应用9.函数f(x)=2cos2x+sin2x的最小值是________.10.已知0xπ2,sin2x2+3sinx2cosπ+x2=-110,求tan2x+π3的值.[能力提升综合练]1.若cosπ4-θcosπ4+θ=260θπ2,则sin2θ的值为()A.23B.73C.76D.3462.已知sin2α=23,则tanα+1tanα等于()A.1B.2C.4D.33.若θ∈π4,π2,sin2θ=378,则sinθ=()A.35B.45C.74D.344.设a∈R,f(x)=cosx(asinx-cosx)+cos2π2-x满足f-π3=f(0),当x∈π4,11π24时,f(x)的值域为()A.[1,2]B.[2,3]C.[3,2]D.[2,2]5.等腰三角形一个底角的余弦值为23,那么这个三角形顶角的正弦值为________.6.已知cos2α=13,π2α2π,求1+sinα-2cos2α23sinα+cosα的值.7.设函数f(x)=53cos2x+3sin2x-4sinxcosx.(1)求f5π12;(2)若f(α)=53,α∈π2,π,求角α.答案[学业水平达标练]1.解析:选Bcos215°-sin215°=cos30°=32.2.解析:选C由于-3πα-5π2,所以-3π2α2-5π4,所以cosα20.所以1-cos(α-π)2=1+cosα2=cosα2=-cosα2.3.解:∵sin50°(1+3tan10°)=sin50°cos10°+3sin10°cos10°=sin50°2sin40°cos10°=1,cos80°1-cos20°=sin10°2sin210°=2sin210°,∴sin50°(1+3tan10°)-cos20°cos80°1-cos20°=1-cos20°2sin210°=2.4.解析:选Dsin2αcos2α=2sinαcosαcos2α=2tanα=2×3=6.5.解析:选B由sinα+cosαsinα-cosα=12分子分母同时除以cosα,得tanα+1tanα-1=12,解得tanα=-3,∴tan2α=2tanα1-tan2α=34.6.解析:选D由已知得,sin2α+1-2sin2α=14,所以sin2α=34,而α∈0,π2,所以sinα=32,cosα=12.因此,tanα=3.7.解析:1cos2α+tan2α=1cos2α+sin2αcos2α=1+sin2αcos2α=(cosα+sinα)2cos2α-sin2α=cosα+sinαcosα-sinα=1+tanα1-tanα=2016.答案:20168.解:(1)因为cosα=-45,π2απ,所以sinα=35,所以tanα=sinαcosα=-34.(2)sin2α=2sinαcosα=-2425.cos2α=2cos2α-1=725,所以sin2α+cos2α=-2425+725=-1725.9.解析:f(x)=1+cos2x+sin2x=1+2sin2x+π4,∴f(x)的最小值为1-2.答案:1-210.解:∵sin2x2+3sinx2cosπ+x2=1-cosx2-3sinx2cosx2=12-32sinx+12cosx=12-sinx+π6,∴由已知得12-sinx+π6=-110,∴sinx+π6=35.∵0xπ2,结合sinx+π6=35易知π6x+π6π2.∴cosx+π6=45,∴tanx+π6=34.∴tan2x+π3=2tanx+π61-tan2x+π6=2×341-916=247.[能力提升综合练]1.解析:选Bcosπ4-θcosπ2-π4-θ=26,即cosπ4-θsinπ4-θ=26,即12sinπ2-2θ=26,所以cos2θ=23.又因为0θπ2,所以02θπ,所以sin2θ=73.故选B.2.解析:选Dtanα+1tanα=sinαcosα+cosαsinα=112sin2α=3.3.解析:选D因为θ∈π4,π2,所以2θ∈π2,π,所以cos2θ0,所以cos2θ=-1-sin22θ=-18.又cos2θ=1-2sin2θ=-18,所以sin2θ=916,所以sinθ=34.4.解析:选Df(x)=a2sin2x-1+cos2x2+1-cos2x2=a2sin2x-cos2x,因为f-π3=f(0),所以a=23,所以f(x)=3sin2x-cos2x=2sin2x-π6,x∈π4,11π24时,2x-π6∈π3,3π4,f(x)∈[2,2].故选D.5.解析:设A是等腰△ABC的顶角,则cosB=23,sinB=1-cos2B=1-232=53.所以sinA=sin(180°-2B)=sin2B=2sinBcosB=2×53×23=459.答案:4596.解:原式=sinα-cosα3sinα+cosα,又∵cos2α=13,∴2cos2α-1=13,∴cos2α=23,3π22α2π,∴3π4απ,∴cosα=-63,sinα=33,∴原式=5+427.7.解:f(x)=53cos2x+3sin2x-4sinxcosx=53cos2x+53sin2x-2sin2x-43sin2x=53-2sin2x-23(1-cos2x)=33-2sin2x+23cos2x=33-4sin2x×12-cos2x×32=33-4sin2xcosπ3-cos2xsinπ3=33-4sin2x-π3.(1)f5π12=33-4sin5π6-π3=33-4sinπ2=33-4.(2)由f(α)=53,得sin2α-π3=-32,由α∈π2,π,得2α-π3∈2π3,5π3,∴2α-π3=4π3,α=5π6.