课下能力提升(六)[学业水平达标练]题组1给角求值问题1.cos300°等于()A.-32B.-12C.12D.322.cos(-585°)sin495°+sin(-570°)的值等于________.题组2化简求值问题3.sin2(π+α)-cos(π+α)cos(-α)+1的值为()A.1B.2sin2αC.0D.24.2+2sin(2π-θ)-cos2(π+θ)可化简为________.5.化简:tan(2π-θ)sin(2π-θ)cos(6π-θ)(-cosθ)sin(5π+θ).题组3给值(式)求值问题6.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是()A.-35B.35C.±35D.457.已知cos(508°-α)=1213,则cos(212°+α)=________.8.已知cosα=13,且-π2<α<0,求cos(-α-π)·sin(2π+α)cos(-α)·cos(π+α)的值.[能力提升综合练]1.如图所示,角θ的终边与单位圆交于点P-55,255,则cos(π-θ)的值为()A.-255B.-55C.55D.2552.记cos(-80°)=k,那么tan100°等于()A.1-k2kB.-1-k2kC.k1-k2D.k1-k23.已知tanπ3-α=13,则tan2π3+α=()A.13B.-13C.233D.-2334.若α∈π2,3π2,tan(α-7π)=-34,则sinα+cosα的值为()A.±15B.-15C.15D.-755.设函数f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,且满足f(2016)=-1,则f(2017)的值为________.6.已知f(x)=sinπx(x<0),f(x-1)-1(x>0),则f-116+f116的值为________.7.化简:1+2sin280°·cos440°sin260°+cos800°.8.已知1+tan(θ+720°)1-tan(θ-360°)=3+22,求:[cos2(π-θ)+sin(π+θ)·cos(π-θ)+2sin2(θ-π)]·1cos2(-θ-2π)的值.答案[学业水平达标练]1.解析:选Ccos300°=cos(360°-60°)=cos60°=12.2.解析:原式=cos(360°+225°)sin(360°+135°)-sin(360°+210°)=cos(180°+45°)sin(180°-45°)-sin(180°+30°)=-2222+12=2-2.答案:2-23.解析:选D原式=(-sinα)2-(-cosα)cosα+1=sin2α+cos2α+1=2.4.解析:2+2sin(2π-θ)-cos2(π+θ)=2+2sin(-θ)-cos2θ=1-2sinθ+sin2θ=|1-sinθ|=1-sinθ.答案:1-sinθ5.解:原式=tan(-θ)sin(-θ)cos(-θ)(-cosθ)sin(π+θ)=tanθsinθcosθcosθsinθ=tanθ.6.解析:选B由sin(π+α)=45,得sinα=-45,而cos(α-2π)=cosα,且α是第四象限角,∴cosα=1-sin2α=35.7.解析:由于cos()508°-α=cos(360°+148°-α)=cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=1213.答案:12138.解:∵-π2<α<0,∴sinα=-1-cos2α=-1-132=-223.原式=-cosα·sinαcosα·(-cosα)=sinαcosα=-223×3=-22.[能力提升综合练]1.解析:选C∵r=1,∴cosθ=-55,∴cos(π-θ)=-cosθ=55.2.解析:选B∵cos(-80°)=k,∴cos80°=k,∴sin80°=1-k2,∴tan80°=1-k2k,∴tan100°=-tan80°=-1-k2k.3.解析:选B∵tan2π3+α=tanπ-π3-α=-tanπ3-α,∴tan2π3+α=-13.4.解析:选B∵tan(α-7π)=tan(α-π)=tan[-(π-α)]=tanα,∴tanα=-34,∴sinαcosα=-34,∵cos2α+sin2α=1,α∈π2,3π2,∴cosα=-45,sinα=35,∴sinα+cosα=-15.5.解析:∵f(2016)=asin(2016π+α)+bcos(2016π+β)=-1,∴f(2017)=asin(2017π+α)+bcos(2017π+β)=asin[π+(2016π+α)]+bcos[π+(2016π+β)]=-[asin(2016π+α)+bcos(2016π+β)]=1.答案:16.解析:因为f-116=sin-116π=sin-2π+π6=sinπ6=12;f116=f56-1=f-16-2=sin-π6-2=-12-2=-52.所以f-116+f116=-2.答案:-27.解:原式=1+2sin(360°-80°)·cos(360°+80°)sin(180°+80°)+cos(720°+80°)=1-2sin80°·cos80°-sin80°+cos80°=sin280°+cos280°-2sin80°·cos80°-sin80°+cos80°=(sin80°-cos80°)2-sin80°+cos80°=|cos80°-sin80°|cos80°-sin80°=sin80°-cos80°cos80°-sin80°=-1.8.解:由1+tan(θ+720°)1-tan(θ-360°)=3+22,得(4+22)tanθ=2+22,所以tanθ=2+224+22=22,故[cos2(π-θ)+sin(π+θ)·cos(π-θ)+2sin2(θ-π)]·1cos2(-θ-2π)=(cos2θ+sinθcosθ+2sin2θ)·1cos2θ=1+tanθ+2tan2θ=1+22+2×222=2+22.