课下能力提升(七)[学业水平达标练]题组1化简求值1.下列与sinθ-π2的值相等的式子为()A.sinπ2+θB.cosπ2+θC.cos3π2-θD.sin3π2+θ2.化简:sin(-α-7π)·cosα-3π2=________.3.化简:1tan2(-α)+1sinπ2-α·cosα-3π2·tan(π+α).题组2条件求值问题4.已知tanθ=2,则sinπ2+θ-cos(π-θ)sinπ2-θ-sin(π-θ)等于()A.2B.-2C.0D.235.若sin(π+α)+cosπ2+α=-m,则cos3π2-α+2sin(2π-α)的值为()A.-23mB.23mC.-32mD.32m6.已知cos(60°+α)=13,且-180°<α<-90°,则cos(30°-α)的值为()A.-223B.223C.-23D.237.已知α是第三象限角,且cos(85°+α)=45,则sin(α-95°)=________.8.已知sinα是方程3x2-10x-8=0的根,且α为第三象限角,求sinα+3π2·sin3π2-α·tan2(2π-α)·tan(π-α)cosπ2-α·cosπ2+α的值.题组3三角恒等式的证明9.求证:tan(2π-α)cos3π2-αcos(6π-α)tan(π-α)sinα+3π2cosα+3π2=1.10.求证:cos(π-θ)cosθsin3π2-θ-1+cos(2π-θ)cos(π+θ)sinπ2+θ-sin3π2+θ=2sin2θ.[能力提升综合练]1.如果cos(π+A)=-12,那么sinπ2+A等于()A.-12B.12C.-32D.322.已知sinα+π2=13,α∈-π2,0,则tanα的值为()A.-22B.22C.-24D.243.已知sin(75°+α)=13,则cos(15°-α)的值为()A.-13B.13C.-223D.2234.在△ABC中,下列各表达式为常数的是()A.sin(A+B)+sinCB.cos(B+C)-cosAC.sin2A+B2+sin2C2D.sinA+B2sinC25.sin21°+sin22°+sin23°+…+sin289°=________.6.已知tan()3π+α=2,则sin(α-3π)+cos(π-α)+sinπ2-α-2cosπ2+α-sin(-α)+cos(π+α)=________.7.已知sinα是方程5x2-7x-6=0的根,且α是第三象限角,求sin-α-3π2cos3π2-αcosπ2-αsinπ2+α·tan2(π-α)的值.8.是否存在角α,β,α∈-π2,π2,β∈(0,π),使等式sin(3π-α)=2cosπ2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.答案[学业水平达标练]1.解析:选D因为sinθ-π2=-sinπ2-θ=-cosθ,对于A,sinπ2+θ=cosθ;对于B,cosπ2+θ=-sinθ;对于C,cos3π2-θ=cosπ+π2-θ=-cosπ2-θ=-sinθ;对于D,sin3π2+θ=sinπ+π2+θ=-sinπ2+θ=-cosθ.2.解析:原式=-sin(7π+α)·cos3π2-α=-sin(π+α)·-cosπ2-α=sinα·(-sinα)=-sin2α.答案:-sin2α3.解:∵tan(-α)=-tanα,sinπ2-α=cosα,cosα-3π2=cos3π2-α=-sinα,tan(π+α)=tanα,∴原式=1tan2α+1cosα·(-sinα)·tanα=1sin2αcos2α+1-sin2α=cos2α-1sin2α=-sin2αsin2α=-1.4.解析:选B原式=cosθ+cosθcosθ-sinθ=2cosθcosθ-sinθ=21-tanθ=-2.5.解析:选C∵sin(π+α)+cosπ2+α=-sinα-sinα=-m,∴sinα=m2.∴cos3π2-α+2sin(2π-α)=-sinα-2sinα=-3sinα=-3×m2=-32m.6.解析:选A由-180°<α<-90°,得-120°<60°+α<-30°,又cos(60°+α)=13>0,所以-90°<60°+α<-30°,即-150°<α<-90°,所以120°<30°-α<180°,cos(30°-α)<0,所以cos(30°-α)=sin(60°+α)=-1-cos2(60°+α)=-1-132=-223.7.解析:由α是第三象限角,cos(85°+α)=45>0,知85°+α是第四象限角,∴sin(85°+α)=-35,sin(α-95°)=sin[(85°+α)-180°]=-sin[180°-(85°+α)]=-sin(85°+α)=35.答案:358.解:∵方程3x2-10x-8=0的两根为x1=4或x2=-23,又∵-1≤sinα≤1,∴sinα=-23.又∵α为第三象限角,∴cosα=-1-sin2α=-53,tanα=255.∴原式=(-cosα)·(-cosα)·tan2α·(-tanα)sinα·(-sinα)=tanα=255.9.证明:左边=tan(-α)-cosπ2-αcos(-α)(-tanα)-sinπ2+α-cosπ2+α=(-tanα)(-sinα)cosα(-tanα)(-cosα)sinα=1=右边.∴原式成立.10.证明:左边=-cosθcosθ(-cosθ-1)+cosθ-cosθcosθ+cosθ=11+cosθ+11-cosθ=1-cosθ+1+cosθ(1+cosθ)(1-cosθ)=21-cos2θ=2sin2θ=右边.∴原式成立.[能力提升综合练]1.解析:选Bcos(π+A)=-cosA=-12,∴cosA=12,∴sinπ2+A=cosA=12.2.解析:选A由已知得,cosα=13,又α∈-π2,0,所以sinα=-1-cos2α=-1-19=-223.因此,tanα=sinαcosα=-22.3.解析:选B∵(75°+α)+(15°-α)=90°,∴cos(15°-α)=cos[90°-(75°+α)]=sin(75°+α)=13.4.解析:选Csin2A+B2+sin2C2=sin2π-C2+sin2C2=cos2C2+sin2C2=1.5.解析:将sin21°+sin22°+sin23°+…+sin289°中的首末两项相加得1,第二项与倒数第二项相加得1,…,共有44组,和为44,剩下sin245°=12,则sin21°+sin22°+sin23°+…+sin289°=892.答案:8926.解析:由tan(3π+α)=2,得tanα=2,则原式=sin(α-π)-cosα+cosα+2sinαsinα-cosα=-sinα+2sinαsinα-cosα=sinαsinα-cosα=tanαtanα-1=22-1=2.答案:27.解:原式=-sinπ+π2+αcosπ+π2-αsinαcosα·tan2α=-sinπ2+αcosπ2-αsinαcosα·tan2α=-cosαsinαsinαcosα·tan2α=-tan2α.方程5x2-7x-6=0的两根为x1=-35,x2=2,又α是第三象限角,∴sinα=-35,cosα=-45,∴tanα=34,故原式=-tan2α=-916.8.解:假设存在角α,β满足条件,则sinα=2sinβ,①3cosα=2cosβ,②由①2+②2得sin2α+3cos2α=2.∴sin2α=12,∴sinα=±22.∵α∈-π2,π2,∴α=±π4.当α=π4时,cosβ=32,∵0<β<π,∴β=π6;当α=-π4时,cosβ=32,∵0<β<π,∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.