第一章1.21.2.1第2课时A级基础巩固一、选择题1.5个人排成一排,如果甲必须站在排头或排尾,而乙不能站在排头或排尾,那么不同站法总数为导学号51124119(B)A.18B.36C.48D.60[解析]甲在排头或排尾站法有A12种,再让乙在中间3个位置选一个,有A13种站法,其余3人有A33种站法,故共有A12·A13·A33=36种站法.2.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有导学号51124120(C)A.504种B.960种C.1008种D.1108种[解析]甲、乙相邻的所有方案有A22A66=1440种;其中丙排在10月1日的和丁排在10月7日的一样多,各有:A22A55=240种,其中丙排在10月1日且丁排在10月7日的有A22A44=48种,故符合题设要求的不同安排方案有:1440-2×240+48=1008种,故选C.3.(2016·郑州高二检测)从6个人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有导学号51124121(B)A.300种B.240种C.144种D.96种[解析]先从除甲、乙外的4人中选取1人去巴黎,再从其余5人中选3人去伦敦、悉尼、莫斯科,共有不同选择方案A14·A35=240种.4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有导学号51124122(B)A.192种B.216种C.240种D.288种[解析]分两类:最左端排甲有A55=120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有C14A44=96种不同的排法,由分类加法原理可得满足条件的排法共有120+96=216种.5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有导学号51124123(A)A.20种B.30种C.40种D.60种[解析]分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法;∴A24+A23+A22=20.6.由数字0、1、2、3、4、5可以组成能被5整除,且无重复数字的不同的五位数有导学号51124124(A)A.(2A45-A34)个B.(2A45-A35)个C.2A45个D.5A45个[解析]能被5整除,则个位须为5或0,有2A45个,但其中个位是5的含有0在首位的排法有A34个,故共有(2A45-A34)个.二、填空题7.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为__24__.导学号51124125[解析]“每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空档中即可.∴有A34=24种不同坐法.8.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__96__.导学号51124126[解析]先分组后用分配法求解,5张参观券分为4组,其中2个连号的有4种分法,每一种分法中的排列方法有A44种,因此共有不同的分法4A44=4×24=96(种).9.2016年某地举行博物展,某单位将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该单位展出这5件作品不同的方案有__24__种.(用数字作答)导学号51124127[解析]将2件书法作品排列,方法数为2种,然后将其作为1件作品与标志性建筑设计作品共同排列有2种排法,对于其每一种排法,在其形成的3个空位中选2个插入2件绘画作品,故共有不同展出方案:2×2×A23=24种.三、解答题10.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.导学号51124128(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?[解析](1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有不同排法A25A66=14400种.(2)先不考虑排列要求,有A88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有(A88-A45A44)=37440种.B级素养提升一、选择题1.用0、1、2、3、4、5组成没有重复数字的6位数,其中个位数字小于十位数字的六位数共有导学号51124129(A)A.300个B.464个C.600个D.720个[解析]解法一:确定最高位有A15种不同方法.确定万位、千位、百位,从剩下的5个数字中取3个排列,共有A35种不同的方法,剩下两个数字,把大的排在十位上即可,由分步乘法计数原理知,共有A15·A35=300(个).解法二:由于个位数字大于十位数字与个位数字小于十位数字的应各占一半,故有12A15·A55=300(个).2.某地为了迎接2016年城运会,某大楼安装了5个彩灯,它们闪亮的顺序不固定.每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是导学号51124130(C)A.1205秒B.1200秒C.1195秒D.1190秒[解析]由题意每次闪烁共5秒,所有不同的闪烁为A55个,相邻两个闪烁的时间间隔为5秒,因此需要的时间至少是5A55+(A55-1)×5=1195秒.二、填空题3.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为__576__.导学号51124131[解析]“不能都站在一起”与“都站在一起”是对立事件,由间接法可得A66-A33A44=576.4.如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是115.导学号51124132[解析]6个数任意填入6个小正方形中有6!=720种方法;将6个数分三组(1,6),(2,5),(3,4),每组中的两个数填入一对面中,共有不同填法A33×2×2×2=48种,故所求概率P=48720=115.三、解答题5.用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.导学号51124133[解析](1)各个数位上的数字允许重复,故由分步乘法计数原理知,共有4×5×5×5×5=2500(个).(2)解法一:先排万位,从1,2,3,4中任取一个有A14种填法,其余四个位置四个数字共有A44种,故共有A14·A44=96(个).解法二:先排0,从个、十、百、千位中任选一个位置将0填入有A14种方法,其余四个数字全排有A44种方法,故共有A14·A44=96(个).(3)构成3的倍数的三位数,各个位上数字之和是3的倍数,按取0和不取0分类:①取0,从1和4中取一个数,再取2进行排,先填百位A12,其余任排有A22,故有2A12·A22种.②不取0,则只能取3,从1或4中再任取一个,再取2然后进行全排为2A33,所以共有2A12A22+2A33=8+12=20(个).(4)考虑特殊位置个位和万位,先填个位,从1、3中选一个填入个位有A12种填法,然后从剩余3个非0数中选一个填入万位,有A13种填法,包含0在内还有3个数在中间三位置上全排列,排列数为A33,故共有A12·A13·A33=36(个).6.4个男同学,3个女同学站成一排.导学号51124134(1)3个女同学必须相邻,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)三位女同学站在中间三个位置上的不同排法有多少种?(4)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?(5)若3个女生身高互不相等,女同学从左到右按高矮顺序排,有多少种不同的排法?[解析](1)3个女同学是特殊元素,她们排在一起,共有A33种排法;我们可视排好的女同学为一整体,再与男同学排队,这时是5个元素的全排列,应有A55种排法,由分步乘法计数乘法原理,有A33A55=720种不同排法.(2)先将男生排好,共有A44种排法,再在这4个男生之间及两头的5个空档中插入3个女生有A35种方案,故符合条件的排法共有A44A35=1440种不同排法.(3)三位女同学站在中间三个位置上的不同排法有A33·A44=144种.(4)先排甲、乙和丙3人以外的其他4人,有A44种排法;由于甲、乙要相邻,故再把甲、乙排好,有A22种排法;最后把排好的甲、乙这个整体与丙分别插入原先排好的4人的空档中有A25种排法.这样,总共有A44A22A25=960种不同排法.(5)从7个位置中选出4个位置把男生排好,则有A47种排法.然后再在余下的3个空位置中排女生,由于女生要按身体高矮排列,故仅有一种排法.这样总共有A47=840种不同排法.C级能力拔高如图所示,有一个正方体的铁丝架,把它的侧棱中点I,J,K,L也用铁丝依次连上,现有一只蚂蚁想沿着铁丝从A点爬到G点,则最近的路线一共有几条?并用字母把这些路线表示出来.导学号51124135[解析]①从A到F,有A→B→J→F,A→I→J→F,A→I→E→F,三条路线.②从A到H,有A→D→L→H,A→I→L→H,A→I→E→H,三条路线.③从A到K,有A→B→C→K,A→B→J→K,A→I→J→K,A→D→C→K,A→D→L→K,A→I→L→K,六条路线.共有3+3+6=12条最短路线.逆向追踪树形图可表示这些路线,如图所示.