高二数学必修5数列单元质量检测题(时间120分钟,满分150分)一、选择题(每小题5分,共计60分)1.数列252211,,,,的一个通项公式是()A.33nanB.31nanC.31nanD.33nan2.已知数列na,13a,26a,且21nnnaaa,则数列的第五项为()A.6B.3C.12D.63.2005是数列7,13,19,25,31,,中的第()项.A.332B.333C.334D.3354.在等差数列na中,若45076543aaaaa,则82aa()A.45B.75C.180D.3005.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.-2B.-3C.-4D.-56.在等差数列{an}中,设公差为d,若S10=4S5,则da1等于()A.21B.2C.41D.47.设数列{an}和{bn}都是等差数列,其中a1=25,b1=75,且a100+b100=100,则数列{an+bn}的前100项之和是()A.1000B.10000C.1100D.110008.已知等差数列{an}的公差d=1,且a1+a2+a3+…+a98=137,那么a2+a4+a6+…+a98的值等于()A.97B.95C.93D.919.在等比数列{an}中,a1=1,q∈R且|q|≠1,若am=a1a2a3a4a5,则m等于()A.9B.10C.11D.1210.公差不为0的等差数列{an}中,a2、a3、a6依次成等比数列,则公比等于()A.21B.31C.2D.311.若数列{an}的前n项和为Sn=an-1(a≠0),则这个数列的特征是()A.等比数列B.等差数列C.等比或等差数列D.非等差数列12.等差数列{an}和{bn}的前n项和分别为Sn与Tn,对一切自然数n,都有nnTS=132nn,则55ba等于()A.32B.149C.3120D.1711二、填空题(每小题4分,共计16分)13.数列{an}的前n项和为Sn=n2+3n+1,则它的通项公式为.14.已知{na1}是等差数列,且a2=2-1,a4=2+1,则a10=.15.在等比数列中,若S10=10,S20=30,则S30=.16.数列121,241,341,4161,…的前n项和为.三、解答题:17.(本小题满分12分)已知等差数列{an}中,Sn=m,Sm=n(m≠n),求Sm+n.18.(本题满分12分)设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.求公差d的取值范围.19.(本题满分12分)已知等差数列{an}中,a1=29,S10=S20,问这个数列的前多少项和最大?并求此最大值.20.(本题满分12分)设a1=5,an+1=2an+3(n≥1),求{an}的通项公式.21.(本题满分12分)求和:1+54+257+…+1523nn22.(本题满分14分)已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,…),a1=1.(1)设bn=an+1-2an(n=1,2,…)求证{bn}是等比数列;(2)设cn=nna2(n=1,2…)求证{cn}是等差数列;(3)求数列{an}的通项公式及前n项和公式.高二数学必修5数列单元质量检测题参考答案一、选择题1.B2.D3.C4.C5.C6.A7.B8.C9.C10.D11.C12.B二、填空题13.22215nnnan14.-477215.7016.nnn21222三、解答题17.解析:设Sn=pn2+qnSn=pn2+qn=m;①则Sm=pm2+qm=n②①-②得:p(n2-m2)+q(n-m)=m-n即p(m+n)+q=-1(m≠n)∴Sm+n=p(m+n)2+q(m+n)=(m+n)[p(m+n)+q]=-(m+n).18.解析:由S12>0及S13<0可得021213130211121211dada2a1+11d>024+7d>0即又∵a3=12,∴a1=12-2d∴a1+6d<03+d<0∴-724<d<-3.19.解析:设数列{an}的公差为d∵S10=S20,∴10×29+2910d=20×29+21920d解得d=-2∴an=-2n+31设这个数列的前n项和最大,an≥0-2n+31≥0则需:即an+1≤0-2(n+1)+31≤0∴14.5≤n≤15.5∵n∈N,∴n=15∴当n=15时,Sn最大,最大值为S15=15×29+21415(-2)=225.20.解析:令an=bn+k,则an+1=bn+1+k∴bn+1+k=2(bn+k)+3即bn+1-2bn=k+3令k+3=0,即k=-3则an=bn-3,bn+1=2bn这说明{bn}为等比数列,q=2b1=a1-k=8,∴bn=8·2n-1=2n+2∴an=2n+2-3.21.解析:设Sn=1+54+257+…+2523nn+1523nn①则51Sn=51+254+357+…+1553nn+nn523②①-②得:121111(1)43333232551131555555157512775127.45165nnnnnnnnnnnnSnnS22.解析:(1)∵Sn+1=4an+2①∴Sn+2=4an+1+2②②-①得Sn+2-Sn+1=4an+1-4an(n=1,2,…)即an+2=4an+1-4an,变形,得an+2-2an+1=2(an+1-2an)∵bn=an+1-2an(n=1,2,…)∴bn+1=2bn.由此可知,数列{bn}是公比为2的等比数列;由S2=a1+a2=4a1+2,又a1=1,得a2=5故b1=a2-2a1=3∴bn=3·2n-1.1111112(2)(1,2,),,22222nnnnnnnnnnnnnnaaaaabcncc将bn=3·2n-1代入,得cn+1-cn=43(n=1,2,…)由此可知,数列{cn}是公差为43的等差数列,它的首项c1=,2121a1331(1).2444ncnn故311(3)(31)444ncnn∴an=2n·cn=(3n-1)·2n-2(n=1,2,…);当n≥2时,Sn=4an-1+2=(3n-4)·2n-1+2,由于S1=a1=1也适合于此公式,所以所求{an}的前n项和公式是:Sn=(3n-4)·2n-1+2.