数列高考题型分类汇总

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

.......题型一1.设{an}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.题型二2.已知数列{an}、{bn}、{cn}满足.(1)设cn=3n+6,{an}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有bn≥bk;(3)设,.当b1=1时,求数列{bn}的通项公式.题型三3.已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2am+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设bn=a2n+1﹣a2n﹣1(n∈N*),证明:{bn}是等差数列;(3)设cn=(an+1﹣an)qn﹣1(q≠0,n∈N*),求数列{cn}的前n项和Sn.题型四4.已知数列{an}满足,,n∈N×.(1)令bn=an+1﹣an,证明:{bn}是等比数列;(2)求{an}的通项公式.5.设数列{an}的前n项和为Sn=2an﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{an+1﹣2an}是等比数列;(Ⅲ)求{an}的通项公式.6.在数列{an}中,a1=1,........(Ⅰ)求{an}的通项公式;(Ⅱ)令,求数列{bn}的前n项和Sn;(Ⅲ)求数列{an}的前n项和Tn.7.已知数列{an}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和Sn.8.在数列na中,10a,且对任意*kNkN,21221,,kkkaaa成等差数列,其公差为kd。(Ⅰ)若kd=2k,证明21222,,kkkaaa成等比数列(*kN);(Ⅱ)若对任意*kN,21222,,kkkaaa成等比数列,其公比为kq.设1q1.证明11kq是等差数列;9.设数列{}na的前n项和为,nS已知11,a142nnSa(I)设12nnnbaa,证明数列{}nb是等比数列(II)求数列{}na的通项公式。10.设数列na的前n项和为nS,已知21nnnbabS(Ⅰ)证明:当2b时,12nnan是等比数列;(Ⅱ)求na的通项公式.......11.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.(I)求数列{bn}的通项公式;(II)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.题型五12.数列{an}的前n项和为Sn,且a1=1,113nnaS,n=1,2,3,……,求(I)a2,a3,a4的值及数列{an}的通项公式;(II)2462naaaa的值.13.已知数列{an}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{an}的通项公式;(2)数列{an}和数列{bn}满足等式an=(n∈N*),求数列{bn}的前n项和Sn.提醒六14.设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{bm}的前2m项和公式;15.已知数列{xn}的首项x1=3,通项xn=2np+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{xn}前n项和Sn的公式.16.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{an}的通项;(Ⅱ)求数列{2an}的前n项和Sn........17.已知等差数列{an}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=(4﹣an)qn﹣1(q≠0,n∈N*),求数列{bn}的前n项和Sn.18.在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.(I)求数列{an}的通项公式;(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn.题型七19.已知等差数列{an}满足a2=0,a6+a8=﹣10(I)求数列{an}的通项公式;(II)求数列{}的前n项和.20.等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=bx+r(b>0)且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记bn=n∈N*求数列{bn}的前n项和Tn.题型八21.(本小题满分12分)已知等差数列na满足:37a,5726aa,na的前n项和为nS.(Ⅰ)求na及nS;(Ⅱ)令bn=211na(nN*),求数列nb的前n项和nT........题型九22.已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且,,成等比数列.(Ⅰ)求数列{an}的通项公式及Sn;(Ⅱ)记An=+++…+,Bn=++…+,当a≥2时,试比较An与Bn的大小.23.设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值围.答案1.(2011•)设{an}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.分析:(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式(Ⅱ)由{bn}是首项为1,公差为2的等差数列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn.解答:解:(Ⅰ)∵设{an}是公比为正数的等比数列∴设其公比为q,q>0∵a3=a2+4,a1=2∴2×q2=2×q+4解得q=2或q=﹣1∵q>0∴q=2∴{an}的通项公式为an=2×2n﹣1=2n(Ⅱ)∵{bn}是首项为1,公差为2的等差数列∴bn=1+(n﹣1)×2=2n﹣1∴数列{an+bn}的前n项和Sn=+=2n+1﹣2+n2=2n+1+n2﹣22.已知数列{an}、{bn}、{cn}满足........(1)设cn=3n+6,{an}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有bn≥bk;(3)设,.当b1=1时,求数列{bn}的通项公式.专题:计算题;分类讨论。分析:(1)先根据条件得到数列{bn}的递推关系式,即可求出结论;(2)先根据条件得到数列{bn}的递推关系式;进而判断出其增减性,即可求出结论;(3)先根据条件得到数列{bn}的递推关系式;再结合叠加法以及分类讨论分情况求出数列{bn}的通项公式,最后综合即可.解答:解:(1)∵an+1﹣an=3,∴bn+1﹣bn=n+2,∵b1=1,∴b2=4,b3=8.(2)∵.∴an+1﹣an=2n﹣7,∴bn+1﹣bn=,由bn+1﹣bn>0,解得n≥4,即b4<b5<b6…;由bn+1﹣bn<0,解得n≤3,即b1>b2>b3>b4.∴k=4.(3)∵an+1﹣an=(﹣1)n+1,∴bn+1﹣bn=(﹣1)n+1(2n+n).∴bn﹣bn﹣1=(﹣1)n(2n﹣1+n﹣1)(n≥2).故b2﹣b1=21+1;b3﹣b2=(﹣1)(22+2),…bn﹣1﹣bn﹣2=(﹣1)n﹣1(2n﹣2+n﹣2).bn﹣bn﹣1=(﹣1)n(2n﹣1+n﹣1).当n=2k时,以上各式相加得bn﹣b1=(2﹣22+…﹣2n﹣2+2n﹣1)+[1﹣2+…﹣(n﹣2)+(n﹣1)]=+=+.∴bn==++.当n=2k﹣1时,.......=++﹣(2n+n)=﹣﹣+∴bn=.3.(2010•)已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2am+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设bn=a2n+1﹣a2n﹣1(n∈N*),证明:{bn}是等差数列;(3)设cn=(an+1﹣an)qn﹣1(q≠0,n∈N*),求数列{cn}的前n项和Sn.分析:(1)欲求a3,a5只需令m=2,n=1赋值即可.(2)以n+2代替m,然后利用配凑得到bn+1﹣bn,和等差数列的定义即可证明.(3)由(1)(2)两问的结果可以求得cn,利用乘公比错位相减求{cn}的前n项和Sn.解答:解:(1)由题意,令m=2,n=1,可得a3=2a2﹣a1+2=6再令m=3,n=1,可得a5=2a3﹣a1+8=20(2)当n∈N*时,由已知(以n+2代替m)可得a2n+3+a2n﹣1=2a2n+1+8于是[a2(n+1)+1﹣a2(n+1)﹣1]﹣(a2n+1﹣a2n﹣1)=8即bn+1﹣bn=8所以{bn}是公差为8的等差数列(3)由(1)(2)解答可知{bn}是首项为b1=a3﹣a1=6,公差为8的等差数列则bn=8n﹣2,即a2n+1﹣a2n﹣1=8n﹣2另由已知(令m=1)可得an=﹣(n﹣1)2.那么an+1﹣an=﹣2n+1=﹣2n+1=2n于是cn=2nqn﹣1.当q=1时,Sn=2+4+6++2n=n(n+1)当q≠1时,Sn=2•q0+4•q1+6•q2++2n•qn﹣1.两边同乘以q,可得qSn=2•q1+4•q2+6•q3++2n•qn.上述两式相减得(1﹣q)Sn=2(1+q+q2++qn﹣1)﹣2nqn=2•﹣2nqn.......=2•所以Sn=2•综上所述,Sn=4.(2009•)已知数列{an}满足,,n∈N×.(1)令bn=an+1﹣an,证明:{bn}是等比数列;(2)求{an}的通项公式.分析:(1)先令n=1求出b1,然后当n≥2时,求出an+1的通项代入到bn中化简可得{bn}是以1为首项,为公比的等比数列得证;(2)由(1)找出bn的通项公式,当n≥2时,利用an=a1+(a2﹣a1)+(a3﹣a2)++(an﹣an﹣1)代入并利用等比数列的前n项和的公式求出即可得到an的通项,然后n=1检验也符合,所以n∈N,an都成立.解答:解:(1)证b1=a2﹣a1=1,当n≥2时,所以{bn}是以1为首项,为公比的等比数列.(2)解由(1)知,当n≥2时,an=a1+(a2﹣a1)+(a3﹣a2)++(an﹣an﹣1)=1+1+(﹣)+…+===,当n=1时,.所以.5.(2008•)设数列{an}的前n项和为Sn=2an﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{an+1﹣2an}是等比数列;(Ⅲ)求{an}的通项公式.考点:等比关系的确定;等比数列的通项公式;数列递推式。.......专题:计算题;证明题。分析:(Ⅰ)令n=1得到s1=a1=2并推出an,令n=2求出a2,s2得到a3推出a4即可;(Ⅱ)由已知得an+1﹣2an=(Sn+2n+1)﹣(Sn+2n)=2n+1﹣2n=2n即为等比数列;(Ⅲ)an=(an﹣2an﹣1)+2(an﹣1﹣2an﹣2)++2n﹣2(a2﹣2a1)+2n﹣1a1=(n+1)•2n﹣1即可.解答:解:(Ⅰ)因为a1=S1,2a1=S1+2,所以a1=2,S1=2由2an=Sn+2n知2an+1=Sn+1+2n+1=an+1+Sn+2n+1得an+1=sn+2n+1①所以a2=S1+22=2+22=6,S2=8a3=S2+23=8+23=16,S2=24a4=S3+24=40(Ⅱ)由题设和①式知an+1﹣2an=(Sn+2n+1)﹣(Sn+2n)=2n+1﹣2n=2n所以{an+1﹣2an}是首项为2,公比为2的等比数列.(Ⅲ)an=(an﹣2an﹣1)+2(an﹣1﹣2an﹣2)++2n﹣2(a2﹣2a1)+2n﹣1a1=(n+1)•2n﹣1点评:

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功