第1页共11页人教版高中数学必修2-1知识点第一章常用逻辑用语1.命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.第2页共11页假命题:判断为假的语句.2.“若p,则q”:p称为命题的条件,q称为命题的结论.3.若原命题为“若p,则q”,则它的逆命题为“若q,则p”.4.若原命题为“若p,则q”,则它的否命题为“若p,则q”.5.若原命题为“若p,则q”,则它的逆否命题为“若q,则p”.6.四种命题的真假性:四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.7.p是q的充要条件:pqp是q的充分不必要条件:qp,pqp是q的必要不充分条件:pqqp,p是q的既不充分不必要条件:,qppq原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假第3页共11页8.逻辑联结词:(1)用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作pq.全真则真,有假则假。(2)用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作pq.全假则假,有真则真。(3)对一个命题p全盘否定,得到一个新命题,记作p.真假性相反9.短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个x,有px成立”,记作“x,px”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.特称命题“存在中的一个x,使px成立”,记作“x,px”.10.全称命题p:x,px,它的否定p:x,px.全称命题的否定是特称命题.第二章圆锥曲线与方程第4页共11页1.椭圆定义:平面内与两个定点1F,2F的距离之和等于常数(大于12FF)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2.椭圆的几何性质:第5页共11页3.平面内与两个定点1F,2F的距离之差的绝对值等于常数(小于12FF)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4.双曲线的几何性质:第6页共11页5.实轴和虚轴等长的双曲线称为等轴双曲线.6.平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l称为抛物线的准线.7.过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即2p.8.焦半径公式:若点00,xy在抛物线220ypxp上,焦点为F,则02pFx;若点00,xy在抛物线220ypxp上,焦点为F,则02pFx;若点00,xy在抛物线220xpyp上,焦点为F,则02pFy;若点00,xy在抛物线220xpyp上,焦点为F,则02pFy.9.抛物线的几何性质:第7页共11页解题注意点:1.“回归定义”是一种重要的解题策略。如:(1)在求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决。2.直线与圆锥曲线的位置关系(1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:相交、相切、相离。联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线方程联立时二次项系数是否为0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是0、0、0.第8页共11页应注意数形结合(例如双曲线中,利用直线斜率与渐近线的斜率之间的关系考查直线与双曲线的位置关系)常见方法:①联立直线与圆锥曲线方程,利用韦达定理等;②点差法(主要适用中点问题,设而不求,注意需检验,化简依据:12122100212,2,22xxyyyyxykxx)(2)有关弦长问题,应注意运用弦长公式及韦达定理来解决;(注意斜率是否存在)①直线具有斜率k,两个交点坐标分别为1122(,),(,)AxyBxy2221212121211(1)()41ABxxxxxxyy2kkk②直线斜率不存在,则12AByy.(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。考查三个方面:A存在性(相交);B中点;C垂直(121kk)注意:①圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。②当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法.③圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。④注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等)(4)求曲线轨迹常见做法:定义法、直接法(步骤:建—设—现(限)—代—化)、代入法(利用动点与已知轨迹上动点之间的关系)、点差法(适用求弦中点轨迹)、参数法、交轨法等。第9页共11页第三章空间向量与立体几何1.空间向量及其运算设111,,axyz,222,,bxyz,则(1)121212,,abxxyyzz.(2)121212,,abxxyyzz.(3)111,,axyz.4121212abxxyyzz.(5)若a、b为非零向量,则12121200ababxxyyzz.(6)若0b,则121212//,,ababxxyyzz.(7)222111aaaxyz.(8)121212222222111222cos,xxyyzzabababxyzxyz.(9)111,,xyz,222,,xyz,则222212121dxxyyzz.(10)共面向量定理:,,(,)pabpxaybxyR共面;P、A、B、C四点共面)1(zyxOCzOByOAxOPACyABxOAOPACyABxAP其中(11)空间向量基本定理(,,)pxaybzcxyzR(不共面的三个向量,,abc构成一组基第10页共11页底,任意两个向量都共面)2.平行:(直线的方向向量,平面的法向量)(,ab是a,b的方向向量,n是平面的法向量)线线平行://ab//ab线面平行://aan或//ab,b或(axbycbc,是内不共线向量)面面平行:12////nn3.垂直线线垂直:ab0abab线面垂直://aan或,(abacbc,是内不共线向量)面面垂直:12nn4.夹角问题线线角||cos|cos,|||||ababab(注意异面直线夹角范围02)线面角||sin|cos,|||||ananan二面角121212|||cos||cos,|||||nnnnnn一般步骤:①求平面的法向量;②计算法向量夹角;③回答二面角(空间想象二面角为锐角还是钝角或借助于法向量的方向),只需说明二面角大小,无需说明理由6.距离问题(一般是求点面距离,线面距离,面面距离转化为点到面的距离)P到平面的距离||||PAndn(其中A是平面内任一点,n为平面的法向第11页共11页量)7.立体几何解题一般步骤(1)坐标法:①建系(选择两两垂直的直线,借助于已有的垂直关系构造);②写点坐标;③写向量的坐标;④向量运算;⑤将向量形式的结果转化为最终结果。(2)基底法:①选择一组基底(一般是共起点的三个向量);②将向量用基底表示;③向量运算;④将向量形式的结果转化为最终结果。(3)几何法:作、证、求异面直线夹角——平移直线(借助中位线平行四边形等平行线);线面角——找准面的垂线,借助直角三角形的知识解决;二面角——定义法作二面角,三垂线定理作二面角;作交线的垂面.