高中数列知识点总结(附例题)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中数列知识点总结(附例题)知识点1:等差数列及其前n项1.等差数列的定义2.等差数列的通项公式如果等差数列{an}的首项为a1,公差为d,那么它的通项公式an=a1+(n-1)d.3.等差中项如果A=a+b2,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d,(n,m∈N*).(2)若{an}为等差数列,且k+l=m+n,(k,l,m,n∈N*),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.5.等差数列的前n项和公式设等差数列{an}的公差d,其前n项和Sn=na1+an2或Sn=na1+nn-12d.6.等差数列的前n项和公式与函数的关系Sn=d2n2+a1-d2n.数列{an}是等差数列⇔Sn=An2+Bn,(A、B为常数).7.等差数列的最值在等差数列{an}中,a10,d0,则Sn存在最大值;若a10,d0,则Sn存在最小值.[难点正本疑点清源]1.等差数列的判定(1)定义法:an-an-1=d(n≥2);(2)等差中项法:2an+1=an+an+2.2.等差数列与等差数列各项和的有关性质(1)am,am+k,am+2k,am+3k,…仍是等差数列,公差为kd.(2)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(3)S2n-1=(2n-1)an.(4)若n为偶数,则S偶-S奇=n2d.若n为奇数,则S奇-S偶=a中(中间项).例1(等差数列的判定或证明):已知数列{an}中,a1=35,an=2-1an-1(n≥2,n∈N*),数列{bn}满足bn=1an-1(n∈N*).(1)求证:数列{bn}是等差数列;(2)求数列{an}中的最大项和最小项,并说明理由.(1)证明∵an=2-1an-1(n≥2,n∈N*),bn=1an-1.∴n≥2时,bn-bn-1=1an-1-1an-1-1=12-1an-1-1-1an-1-1=an-1an-1-1-1an-1-1=1.∴数列{bn}是以-52为首项,1为公差的等差数列.(2)解由(1)知,bn=n-72,则an=1+1bn=1+22n-7,设函数f(x)=1+22x-7,易知f(x)在区间-∞,72和72,+∞内为减函数.∴当n=3时,an取得最小值-1;当n=4时,an取得最大值3.例2(等差数列的基本量的计算)设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.(1)若S5=5,求S6及a1(2)求d的取值范围.解(1)由题意知S6=-15S5=-3,a6=S6-S5=-8.所以5a1+10d=5,a1+5d=-8.解得a1=7,所以S6=-3,a1=7.(2)方法一∵S5S6+15=0,∴(5a1+10d)(6a1+15d)+15=0,即2a21+9da1+10d2+1=0.因为关于a1的一元二次方程有解,所以Δ=81d2-8(10d2+1)=d2-8≥0,解得d≤-22或d≥22.方法二∵S5S6+15=0,∴(5a1+10d)(6a1+15d)+15=0,9da1+10d2+1=0.故(4a1+9d)2=d2-8.所以d2≥8.故d的取值范围为d≤-22或d≥22.例3(前n项和及综合应用)(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;(2)已知数列{an}的通项公式是an=4n-25,求数列{|an|}的前n项和.解方法一∵a1=20,S10=S15,∴10×20+10×92d=15×20+15×142d,∴d=-53.∴an=20+(n-1)×-53=-53n+653.∴a13=0,即当n≤12时,an0,n≥14时,an0,∴当n=12或13时,Sn取得最大值,且最大值为S13=S12=12×20+12×112×-53=130.方法二同方法一求得d=-53.∴Sn=20n+nn-12·-53=-56n2+1256n=-56n-2522+312524.∵n∈N*,∴当n=12或13时,Sn有最大值,且最大值为S12=S13=130.(2)∵an=4n-25,an+1=4(n+1)-25,∴an+1-an=4=d,又a1=4×1-25=-21.所以数列{an}是以-21为首项,以4为公差的递增的等差数列.令an=4n-250,①an+1=4n+1-25≥0,②由①得n614;由②得n≥514,所以n=6.即数列{|an|}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列,而|a7|=a7=4×7-24=3.设{|an|}的前n项和为Tn,则Tn=21n+nn-12×-4n≤666+3n-6+n-6n-72×4n≥7=-2n2+23nn≤6,2n2-23n+132n≥7.例4,已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为3例5等差数列{},{}nnab的前n项和分别为{},{}nnST,且7453nnSnTn+=-,则使得nnab为正整数的正整数n的个数是3.(先求an/bnn=5,13,35)已知递推关系求通项:这类问题的要求不高,但试题难度较难把握.一般有三常见思路:(1)算出前几项,再归纳、猜想;(2)“an+1=pan+q”这种形式通常转化为an+1+λ=p(an+λ),由待定系数法求出,再化为等比数列;(3)逐差累加或累乘法.例6已知数列na中,113a,当2≥n时,其前n项和nS满足2221nnnSaS,则数列na的通项公式为例7在数列{}na中,12a,11ln(1)nnaan,则na.知识点2:等比数列及其n项和1.等比数列的定义2.等比数列的通项公式3.等比中项若G2=a·b(ab≠0),那么G叫做a与b的等比中项.4.等比数列的常用性质(1)通项公式的推广:an=anqn-m,(n,m∈N*).(2)若{an}为等比数列,且k+l=m+n,(k,l,m,n∈N*),则ak·al=am·an.(3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),21221nnnnSSSS1.21nSn1111122(2)nnnnnnSSSSnSS≥21132214nnann≥13211221,2.≥nnnnnaaaaaanaaaa2lnn1an,{a2n},{an·bn},anbn仍是等比数列.5.等比数列的前n项和公式等比数列{an}的公比为q(q≠0),其前n项和为Sn,当q=1时,Sn=na1;当q≠1时,Sn=a11-qn1-q=a1-anq1-q.6.等比数列前n项和的性质公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn.7.等比数列的单调性q10q1q=1q0a0递增递减常数列摆动数列a0递减递增常数列摆动数列【难点】1.等比数列的特征从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非常数.2.等比数列中的函数观点利用函数、方程的观点和方法,揭示等比数列的特征及基本量之间的关系.在借用指数函数讨论单调性时,要特别注意首项和公比的大小.3.等比数列的前n项和Sn(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)等比数列的通项公式an=a1qn-1及前n项和公式Sn=a11-qn1-q=a1-anq1-q(q≠1)共涉及五个量a1,an,q,n,Sn,知三求二,体现了方程的思想的应用.(3)在使用等比数列的前n项和公式时,如果不确定q与1的关系,一般要用分类讨论的思想,分公比q=1和q≠1两种情况.例1:(1)在等比数列{an}中,已知a6-a4=24,a3a5=64,求{an}的前8项和S8;(2)设等比数列{an}的公比为q(q0),它的前n项和为40,前2n项和为3280,且前n项中数值最大的项为27,求数列的第2n项.(1)设数列{an}的公比为q,由通项公式an=a1qn-1及已知条件得:a6-a4=a1q3q2-1=24,①a3·a5=a1q32=64.②由②得a1q3=±8.将a1q3=-8代入①式,得q2=-2,无解将a1q3=8代入①式,得q2=4,∴q=±2.,故舍去.当q=2时,a1=1,∴S8=a11-q81-q=255;当q=-2时,a1=-1,∴S8=a11-q81-q=85.(2)若q=1,则na1=40,2na1=3280,矛盾.∴q≠1,∴a11-qn1-q=40,①a11-q2n1-q=3280,②②①得:1+qn=82,∴qn=81,③将③代入①得q=1+2a1.④又∵q0,∴q1,∴a10,{an}为递增数列.∴an=a1qn-1=27,⑤由③、④、⑤得q=3,a1=1,n=4.∴a2n=a8=1×37=2187.例2已知数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),且an+Sn=n.(1)设cn=an-1,求证:{cn}是等比数列;(2)求数列{bn}的通项公式.1)证明∵an+Sn=n,①∴an+1+Sn+1=n+1.②②-①得an+1-an+an+1=1,∴2an+1=an+1,∴2(an+1-1)=an-1,∴an+1-1an-1=12,∴{an-1}是等比数列.∵首项c1=a1-1,又a1+a1=1,∴a1=12,∴c1=-12,公比q=12.又cn=an-1,∴{cn}是以-12为首项,12为公比的等比数列.(2)解由(1)可知cn=-12·12n-1=-12n,∴an=cn+1=1-12n.∴当n≥2时,bn=an-an-1=1-12n-1-12n-1=12n-1-12n=12n.又b1=a1=12代入上式也符合,∴bn=12n.例3在等比数列{an}中,(1)若已知a2=4,a5=-12,求an;(2)若已知a3a4a5=8,求a2a3a4a5a6的值.解(1)设公比为q,则a5a2=q3,即q3=-18,∴q=-12,∴an=a5·qn-5=-12n-4.(2)∵a3a4a5=8,又a3a5=a24,∴a34=8,a4=2.∴a2a3a4a5a6=a54=25=32.例4已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*.(1)令bn=an+1-an,证明:{bn}是等比数列;(2)求{an}的通项公式.规范解答(1)证明b1=a2-a1=1,[1分]当n≥2时,bn=an+1-an=an-1+an2-an=-12(an-an-1)=-12bn-1,[5分]∴{bn}是首项为1,公比为-12的等比数列.[6分](2)解由(1)知bn=an+1-an=-12n-1,[8分]当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)[10分]=1+1+-12+…+-12n-2=1+1--12n-11--12=1+231--12n-1=53-23-12n-1当n=

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功